OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 10 — Oct. 1, 2002
  • pp: 2357–2364

Gain optimization in electrically pumped AlGaAs quantum cascade lasers

Saša Kočinac, Stanko Tomić, Zoran Ikonić, and Vitomir Milanović  »View Author Affiliations


JOSA B, Vol. 19, Issue 10, pp. 2357-2364 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002357


View Full Text Article

Acrobat PDF (184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design of the active region of a current-pumped quantum-cascade laser to achieve maximal gain is proposed. Starting with an arbitrary smooth potential, a family of isospectral Hamiltonians with a predefined energy spectrum is generated by use of the inverse spectral theory. By varying the relevant control parameter, one varies the potential shape, inducing changes in transition dipole moments and electron–phonon scattering times, and thus finds the potential that gives the largest gain. As an example, a simple step quantum-well structure with just a few layers is then designed such that, in postgrowth heating-induced layer interdiffusion, it will acquire a shape that is as close as possible to that of the optimal smooth potential.

© 2002 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(160.6000) Materials : Semiconductor materials

Citation
Saša Kočinac, Stanko Tomić, Zoran Ikonić, and Vitomir Milanović, "Gain optimization in electrically pumped AlGaAs quantum cascade lasers," J. Opt. Soc. Am. B 19, 2357-2364 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-10-2357


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. F. Kazarinov and R. A. Suris, “Possibility of the amplification electromagnetic waves in a semiconductor with superlattice,” Sov. Phys. Semicond. 5, 707–711 (1971).
  2. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
  3. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Continuous wave operation of quantum cascade laser based on vertical transitions at λ=4.6 μm,” Superlattices Microstruct. 19, 341–345 (1996).
  4. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength vertical transition quantum cascade lasers operating cw at 110 K,” Superlattices Microstruct. 19, 357–363 (1996).
  5. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, “Continuous wave operation of midinfrared (7.4–8.6-μm) quantum cascade laser up to 110 K temperature,” Appl. Phys. Lett. 68, 1745–1747 (1996).
  6. C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high-power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ=8.5 μm,” Appl. Phys. Lett. 72, 1430–1432 (1998).
  7. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Pulsed and continuous-wave operation of long wavelength infrared (λ=9.3 μm) quantum cascade,” IEEE J. Quantum Electron. 33, 89–93 (1997).
  8. C. Gmachi, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High power λ≈8 μm quantum cascade lasers with near optimum performance,” Appl. Phys. Lett. 72, 3130–3132 (1998).
  9. F. Capasso, C. Gmachi, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
  10. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S. Hybertsen, and A. Y. Cho, “Quantum cascade lasers without intersubband population inversion,” Phys. Rev. Lett. 76, 411–414 (1996).
  11. V. Berger, “Three-level laser based on intersubband transitions in asymmetric quantum wells: a theoretical study,” Semicond. Sci. Technol. 9, 1493–1499 (1994).
  12. S. Tomić, V. Milanović, and Z. Ikonić, “Gain optimization in optically pumped AlGaAs unipolar quantum-cascade lasers,” IEEE J. Quantum Electron. 37, 1337–1344 (2001).
  13. C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “GaAs/AlGaAs quantum cascade lasers,” Appl. Phys. Lett. 73, 3486–3488 (1998).
  14. B. N. Zakhariev and V. M. Chabanov, “New situation in quantum mechanics (wonderful potentials from the inverse problems),” Inverse Probl. 13, R47–R79 (1997).
  15. P. Blood, “On the dimensionality of optical absorption, gain and recombination in quantum-confined structures,” IEEE J. Quantum Electron. 36, 354–362 (2000).
  16. G. Sun and J. Khurgin, “Optically pumped four-level infrared laser based on intersubband transitions in multiple quantum wells: feasibility study,” IEEE J. Quantum Electron. 29, 1104–1111 (1993).
  17. S. Tomić, “Optimization of nonlinear optical properties in AlGaAs quantum wells: inverse spectral theory,” Ph.D. dissertation (University of Belgrade, Belgrade, Yugoslavia, 1998).
  18. V. Milanović and Z. Ikonić, “Equispaced-level Hamiltonians with the variable effective mass following the potential,” Phys. Rev. B 54, 1998–2003 (1996).
  19. C. Sirtori, F. Capasso, and J. Faist, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50, 8663–8674 (1994).
  20. X. Liu, N. Li, X. Chen, W. Lu, W. Xu, X. Z. Yuan, N. Li, S. C. Shen, S. Yuan, H. H. Tan, and C. Jagadish, “Wavelength tuning of GaAs/AlGaAs quantum well infrared photodetectors by thermal interdiffusion,” Jpn. J. Appl. Phys., Part 1 38, 5044–5046 (1999).
  21. W. C. H. Choy, “Tailoring light and heavy holes of GaAsP–AlGaAs quantum wells by using interdiffusion for polarization-independent amplifier applications,” IEEE J. Quantum Electron. 36, 164–171 (2000).
  22. T. E. Schlesinger and T. Kuech, “Determination of the interdiffusion of Al and Ga in undoped (Al, Ga)As/GaAs quantum wells,” Appl. Phys. Lett. 49, 519–521 (1986).
  23. J. Radovanović, G. Todorović, V. Milanović, Z. Ikonić, and D. Indjin, “Two methods of quantum well profile optimization for maximal nonlinear optical susceptibilities,” Phys. Rev. B 63, 115327 (2001).
  24. J. Wang, J.-P. Leburton, F. H. Julien, and A. Saar, “Design and performance optimization of optically-pumped mid-infrared intersubband semiconductor lasers,” IEEE Photon. Technol. Lett. 8, 1001–1003 (1996).
  25. S. Vlaev, F. Garcia-Moliner, and V. R. Velasco, “Electronic states of digital versus analog graded quantum wells,” Phys. Rev. B 52, 13784 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited