OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 10 — Oct. 1, 2002
  • pp: 2384–2390

Nonlinear switching and modulational instability of wave patterns in ring-shaped vertical-cavity surface-emitting lasers

J. Scheuer, M. Orenstein, and D. Arbel  »View Author Affiliations

JOSA B, Vol. 19, Issue 10, pp. 2384-2390 (2002)

View Full Text Article

Acrobat PDF (556 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have explored theoretically and experimentally the steady-state transverse light fields emitted from ring-shaped lasers, specifically, those from vertical-cavity surface-emitting lasers (VCSELs). We saw the switching on of patterns of increasing spatial frequencies as a function of pump parameter. Furthermore, we were able to identify the mechanism for such an evolution as geometrical modulational instability within the nonlinear cavity. Other mechanisms such as the conventional gain–loss balance had no effect on the ring configuration that was modeled. The experiments with annular VCSELs gave results that matched the theoretical predictions well, although other mechanisms not considered in our model, such as carrier diffusion, took place in the experimental devices. We conclude that the nonlinear mechanisms presented here can be regarded as limiting cases in the interpretation of more-complex functions, such as patterns, modes, and filamentation switching, in VCSELs.

© 2002 Optical Society of America

OCIS Codes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in

J. Scheuer, M. Orenstein, and D. Arbel, "Nonlinear switching and modulational instability of wave patterns in ring-shaped vertical-cavity surface-emitting lasers," J. Opt. Soc. Am. B 19, 2384-2390 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. J. Firth and A. J. Scroggie, “Spontaneous pattern formation in an absorptive system,” Europhys. Lett. 26, 521–523 (1994).
  2. G. DG. D’ Alessandro and W. J. Firth, “Hexagonal spatial patterns for a Kerr slice with a feedback mirror,” Phys. Rev. A 46, 537–548 (1992).
  3. L. Djaloshinsky and M. Orenstein, “Coupling of concentric semiconductor microring lasers,” Opt. Lett. 23, 364–366 (1998).
  4. E. Pampaloni, S. Residori, and F. T. Arecchi, “Roll-hexagon transition in a Kerr-like experiment,” Europhys. Lett. 24, 647–652 (1993).
  5. R. J. Lang, D. Mehuys, A. Hardy, K. D. Dzurko, and D. F. Welch, “Spatial evolution of filaments in broad area diode laser amplifiers,” Appl. Phys. Lett. 62, 1209–1211 (1993).
  6. H. Adachihara, O. Hess, E. Abraham, P. Ru, and J. V. Moloney, “Spatiotemporal chaos in broad-area semiconductor lasers,” J. Opt. Soc. Am. B 10, 658–665 (1993).
  7. J. R. Maricante and G. P. Agrawal, “Nonlinear mechanisms of filamentation in broad-area semiconductor lasers,” IEEE J. Quantum Electron. 32, 590–596 (1996).
  8. J. Scheuer and M. Orenstein, “Optical vortices crystals—spontaneous generation in nonlinear semiconductor microcavities,” Science 285, 230–233 (1999).
  9. H. Li, T. L. Lucas, J. G. McInerney, and R. A. Morgan, “Transverse modes and patterns in electrically pumped vertical cavity surface-emitting semiconductor lasers,” in Conference on Lasers and Electro-Optics CLEO/Europe 1994 (Optical Society of America, Washington, D.C., 1994), pp. 197–198.
  10. J. V. Moloney and A. C. Newell, “Spatio-temporal structures in wide aperture lasers,” in Nonlinear Dynamics and Spatial Complexity in Optical Systems, R. G. Harrison and J. S. Uppal, eds. (Institute of Physics, Bristol, UK, 1992), pp. 197–216.
  11. V. N. Morozov, J. A. Neff, and Z. Haijun, “Analysis of vertical-cavity surface-emitting laser multimode behavior,” IEEE J. Quantum Electron. 33, 980–988 (1997).
  12. A. Valle, L. Pesquera, P. Rees, and A. Shore, “Transverse mode selection and light-current characteristics in index-guided VCSELs,” in Digest of the LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1999), pp. III53–III54.
  13. B. J. Flanigan and J. E. Carroll, “Mode selection in complex-coupled semiconductor DFB lasers,” Electron. Lett. 31, 977–979 (1995).
  14. T. Sh. Misirpashaev and C. W. J. Beenakker, “Lasing threshold and mode competition in chaotic cavities,” Phys. Rev. A 57, 2041–2045 (1998).
  15. C. Green, G. B. Mindlin, E. J. D’Angelo, H. G. Solari, and J. R. Tredicce, “Spontaneous symmetry breaking in a laser: the experimental side,” Phys. Rev. Lett. 65, 3124–3127 (1990).
  16. E. J. D’Angelo, E. Izaguirre, G. B. Mindin, G. Huyet, L. Gil, and J. R. Tredicce, “Spatiotemporal dynamics of lasers in the presence of an imperfect O(2) symmetry,” Phys. Rev. Lett. 68, 3702–3705 (1992).
  17. G. Huyet, C. Mathis, and J. R. Tredicce, “Dynamics of annular lasers,” Opt. Commun. 127, 257–262 (1996).
  18. G. Huyet, C. Mathis, H. Grassi, J. R. Tredicce, and N. B. Abraham, “Regarding standing versus traveling waves in the transverse spatial patterns of homogeneously and inhomogeneously broadened lasers,” Opt. Commun. 111, 488–492 (1994).
  19. D. L. Huffaker, D. G. Deppe, and T. J. Rogers, “Transverse mode behavior in native-oxide-defined low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 1611–1613 (1994).
  20. P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. Indik, “Space–time dynamics of wide-gain-section lasers,” Phys. Rev. A 45, 8129–8137 (1992).
  21. G. L. Oppo, G. D’Alessandro, and W. J. Firth, “Spatiotemporal instabilities of lasers in models reduced via center manifold techniques,” Phys. Rev. A 44, 4712–4720 (1991).
  22. G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 607–616 (1996).
  23. J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldern, “Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295–1308 (1993).
  24. G. Chen, “A comparative study on the thermal characteristics of vertical-cavity surface-emitting lasers,” J. Appl. Phys. 77, 4251–4258 (1995).
  25. C. Degen, L. Fischer, W. Elsässen, L. Fratta, P. Debernardi, G. P. Beva, M. Brunner, R. Hövel, M. Moser, and K. Gulden, “Transverse modes in thermally detuned oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 63, 023817 (2001).
  26. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  27. Q. Feng, J. V. Moloney, and A. C. Newell, “Amplitude instabilities of transverse traveling waves in lasers,” Phys. Rev. Lett. 71, 1705–1708 (1993).
  28. J. Scheuer and B. A. Malomed, “Stable and chaotic solutions of the complex Ginzburg–Landau equation with periodical boundary conditions,” Physica D 161, 102–115 (2002).
  29. M. Orenstein, A. C. Von Lehmen, C. Chang-Hasnain, N. G. Stoffel, L. T. Florez, J. P. Harison, and E. Clausen, “Vertical cavity surface emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56, 2384–2386 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited