OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 10 — Oct. 1, 2002
  • pp: 2403–2412

Two-mode fringes in planar photonic crystal waveguides with constrictions: a probe that is sensitive to propagation losses

Emilie Schwoob, Henri Benisty, Ségolène Olivier, Claude Weisbuch, Christopher J. M. Smith, Thomas F. Krauss, Romuald Houdré, and Ursula Oesterle  »View Author Affiliations


JOSA B, Vol. 19, Issue 10, pp. 2403-2412 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002403


View Full Text Article

Acrobat PDF (514 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the transmission of planar photonic crystal channel waveguides, each of which consists of three missing rows in a triangular lattice of air holes and modified at both ends by constrictions. The structures are fabricated into a GaAs/AlGaAs heterostructure in which an internal source consisting of three layers of quantum dots is embedded. The constrictions induce peculiar spectral features that are used to improve the sensitivity of transmission measurements to propagation losses. Two effects are pointed out: (i) The constrictions act as mirrors, inducing Fabry–Perot fringes on the transmitted spectra, (ii) and the constrictions also induce a mode-mixing process, mostly between the fundamental and the third transverse modes of the waveguides. Using the visibility of the resultant two-mode fringes observed on the transmitted spectra, we extract a quantitative value for propagation losses at λ=1 μm: α1=25 cm−1 (1 dB/100 μm) for the fundamental mode.

© 2002 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(050.2230) Diffraction and gratings : Fabry-Perot
(130.2790) Integrated optics : Guided waves
(130.5990) Integrated optics : Semiconductors
(250.5230) Optoelectronics : Photoluminescence
(290.5820) Scattering : Scattering measurements

Citation
Emilie Schwoob, Henri Benisty, Ségolène Olivier, Claude Weisbuch, Christopher J. M. Smith, Thomas F. Krauss, Romuald Houdré, and Ursula Oesterle, "Two-mode fringes in planar photonic crystal waveguides with constrictions: a probe that is sensitive to propagation losses," J. Opt. Soc. Am. B 19, 2403-2412 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-10-2403


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
  2. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
  3. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection and diffraction of two-dimensional photonic bandgap structures at nearinfrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
  4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  5. M. Rattier, H. Benisty, C. J. M. Smith, A. Béraud, D. Cassagne, T. F. Krauss, and C. Weisbuch, “Performance of waveguide-based two-dimensional photonic-crystal mirrors studied with Fabry–Pérot resonators,” IEEE J. Quantum Electron. 37, 237–243 (2001).
  6. D. M. Atkin, P. St. J. Russell, T. A. Birks, and P. J. Roberts, “Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure,” J. Mod. Opt. 43, 1035–1051 (1996).
  7. P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystal of low-dimensional periodicity,” IEE Proc.: Optoelectron. 145, 384–390 (1998).
  8. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
  9. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, A. Béraud, D. Cassagne, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
  10. C. G. P. Herben, X. J. M. Leitens, F. H. Groen, and M. K. Smit, “Low-loss and compact phased array demultiplexer using a double-etch process,” presented at the 9th European Conference on Integrated Optics, Turin, Italy, April 13–16, 1999.
  11. P. R. Villeneuve and M. Piché, “Photonic bandgaps in periodic dielectric structures,” Prog. Quantum Electron. 18, 153–200 (1994).
  12. C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77, 2813–2815 (2000).
  13. A. Talneau, L. L. Gouezigou, and N. Bouadma, “Quantitative measurements of low propagation losses at 1.55 μm on planar photonic crystal waveguides,” Opt. Lett. 26, 1259–1261 (2001).
  14. I. P. Kaminow and L. W. Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33, 62–64 (1978).
  15. R. Regener, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1984).
  16. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, “Use of guided spontaneous emission of a semiconductor to probe the optical properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 71, 738–740 (1997).
  17. H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, R. M. De La Rue, R. Houdré, U. Oesterle, and D. Cassagne, “Optical and confinement properties of two-dimensional photonic crystals,” J. Lightwave Technol. 17, 2063–2077 (1999).
  18. D. Labilloy, “Cristaux photoniques bidimensionnels pour le proche infrarouge: propriétés optiques et confinement,” Ph.D. dissertation (Ecole Polytechnique, Palaiseau, France, 1999).
  19. S. Olivier, M. Rattier, H. Benisty, C. J. M. Smith, R. M. D. L. Rue, T. F. Krauss, U. Oesterle, R. Houdré, and C. Weisbuch, “Mini stopbands of a one dimensional system: the channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B 63, 113311 (2001).
  20. Such round trips continue to occur for light excited in the waveguide.
  21. H. Benisty, “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,” J. Appl. Phys. 79, 7483–7492 (1996).
  22. The variation is due to the consideration of different points along the dispersion branches.
  23. P. Lalanne and H. Benisty, “Ultimate limits of two-dimensional photonic crystals etched through waveguides: an electromagnetic analysis,” J. Appl. Phys. 89, 1512–1514 (2001).
  24. A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
  25. E. Chow, S. Y. Lon, J. R. Wendt, S. G. Johnson, and J. D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic crystal waveguide bends at λ=1.55 μm wavelengths,” Opt. Lett. 26, 286–288 (2001).
  26. B. E. A. Saleh and M. C. Teich, Fundamental of Photonics (Wiley, New York, 1991).
  27. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited