OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 10 — Oct. 1, 2002
  • pp: 2437–2448

Scattering enhancement from an array of interacting dipoles near a planar waveguide

Brian J. Soller and Dennis G. Hall  »View Author Affiliations


JOSA B, Vol. 19, Issue 10, pp. 2437-2448 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002437


View Full Text Article

Acrobat PDF (522 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a theory for light scattering from a random array of nanoparticles spaced much less than an optical wavelength from an optical waveguide. We deal with the randomness in the particle positions by convolving the single-particle Green’s dyadic with a correlation function that describes the average properties of the particle distribution. This allows us to treat free-space and substrate-mediated particle–particle interactions. We show that coherent interactions between particles near a waveguide cause dramatic, qualitative changes to the particle susceptibilities. Hence, the scattering spectra show strong, surface-induced peaks that we associate with the onset of leaky guided waves of the layered substrate. Our predictions produce outstanding agreement with the scattering experiments of Stuart and Hall [Phys. Rev. Lett. 80, 5663 (1998)].

© 2002 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles
(310.2790) Thin films : Guided waves

Citation
Brian J. Soller and Dennis G. Hall, "Scattering enhancement from an array of interacting dipoles near a planar waveguide," J. Opt. Soc. Am. B 19, 2437-2448 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-10-2437


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chaps. 5 and 12.
  2. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
  3. W. R. Holland and D. G. Hall, “Surface-plasmon dispersion relation: shifts induced by the interaction with localized plasma resonances,” Phys. Rev. B 27, 7765–7768 (1983).
  4. M. J. Bloemer, J. G. Mantovani, J. P. Goudonnet, D. R. James, R. J. Warmack, and T. L. Ferrell, “Observation of driven surface-plasmon modes in metal particulates above tunnel junctions,” Phys. Rev. B 35, 5947–5954 (1987).
  5. H. G. Bingler, H. Brunner, M. Klenke, A. Leitner, F. R. Aussenegg, and A. Wokaun, “Enhanced second harmonic generation in a silver-spacer-islands multilayer system,” J. Chem. Phys. 99, 7499–7505 (1993).
  6. F. R. Aussenegg, A. Leitner, and H. Gold, “Optical second-harmonic generation of metal-island films,” Appl. Phys. A 60, 97–101 (1995).
  7. G. S. Agarwal and S. D. Gupta, “Interaction between surface plasmons and localized plasmons,” Phys. Rev. B 32, 3607–3611 (1985).
  8. K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
  9. S. Nie and S. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
  10. S. Emory, W. E. Haskins, and S. Nie, “Direct observation of size-dependent optical enhancement in single metal nanoparticles,” J. Am. Chem. Soc. 120, 8009–8010 (1998).
  11. W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4, 236–238 (1979).
  12. M. Meier, A. Wokaun, and P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of size exceeding the Rayleigh limit,” J. Opt. Soc. Am. B 2, 931–949 (1985).
  13. H. R. Stuart and D. G. Hall, “Enhanced dipole–dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80, 5663–5663 (1998).
  14. T. Yamaguchi, S. Yoshida, and A. Kinbara, “Effect of the dipole interaction between island particles on the optical properties of an aggregated silver film,” Thin Solid Films 13, 261–264 (1972).
  15. T. Yamaguchi, M. Sakai, and N. Saito, “Optical properties of well-defined granular metal systems,” Phys. Rev. B 32, 2126–2131 (1985).
  16. A. Leitner, Z. Zhensheng, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Optical properties of a metal island film close to a smooth metal surface,” Appl. Opt. 32, 102–110 (1993).
  17. R. R. Singer, A. Leitner, and F. R. Aussenegg, “Structure analysis and models for optical constants of discontinuous metallic silver films,” J. Opt. Soc. Am. B 12, 220–228 (1995) and references therein.
  18. E. Goldstein and P. Meystre, “Dipole–dipole interaction in optical cavities,” Phys. Rev. A 56, 5135–5146 (1997).
  19. G. S. Agarwal and S. D. Gupta, “Microcavity enhanced modification of the dipole–dipole interaction,” Phys. Rev. A 57, 667–670 (1998).
  20. T. Kobayashi, Q. Zheng, and T. Sekiguchi, “Resonant dipole–dipole interaction in a cavity,” Phys. Rev. A 52, 2835–2846 (1995).
  21. M. Hopmeier, W. Guss, M. Deussen, E. O. Göbel, and R. F. Mahrt, “Microcavity enhanced modification of the dipole–dipole interaction,” Phys. Rev. A 57, 667–670 (1999).
  22. G. Kurizki and A. Z. Genack, “Suppression of molecular interactions in periodic dielectric structures,” Phys. Rev. Lett. 61, 2269–2271 (1988).
  23. G. Kurizki, “Two-atom resonant radiative coupling in photonic band structures,” Phys. Rev. A 42, 2915–2924 (1990).
  24. S. John and T. Quang, “Resonant nonlinear dielectric response in a photonic band gap material,” Phys. Rev. Lett. 76, 2484–2487 (1996).
  25. J. Martorell and N. M. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877–1880 (1990).
  26. M. Tomita and K. Ohosumi, “Enhancement of molecular interactions in strongly scattering dielectric composite optical media,” Phys. Rev. B 50, 10369–10372 (1994).
  27. J. Martorell and N. M. Lawandy, “Spontaneous emission in a disordered dielectric medium,” Phys. Rev. Lett. 66, 887–890 (1991).
  28. K. Drexhage, “Interaction of light with monomolecular dye layers,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1974), Vol. 12, pp. 163–232.
  29. W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52, 1041–1044 (1984).
  30. H. Morawitz, “Self-coupling of a two-level system by a mirror,” Phys. Rev. 187, 1792–1796 (1969).
  31. J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near an interface,” Phys. Rev. A 30, 1185–1193 (1984).
  32. T. Takemori, M. Inoue, and K. Ohtaka, “Optical response of a sphere coupled to a metal substrate,” J. Phys. Soc. Jpn. 56, 1587–1602 (1987).
  33. M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “Optical properties of 2D-systems of small particles on a substrate,” Physica A 157, 269–278 (1989).
  34. M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of truncated spheres and oblate spheroids on a substrate: comparison with experimental results,” Thin Solid Films 164, 57–62 (1988).
  35. P. Bobbert and J. Vlieger, “The polarizability of a spheroidal particle on a substrate,” Physica A 147, 115–141 (1987).
  36. P. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–242 (1986).
  37. G. Videen, M. Turner, V. Iafelice, W. Bickel, and W. Wolfe, “Scattering from a small sphere near a surface,” J. Opt. Soc. Am. A 10, 118–126 (1993).
  38. G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8, 483–489 (1991).
  39. E. Fucile, P. Denti, F. Borghese, R. Saija, and O. I. Sindoni, “Optical properties of a sphere in the vicinity of a plane surface,” J. Opt. Soc. Am. A 14, 1505–1514 (1997).
  40. M. Taubenblatt and T. Tran, “Calculation of light scattering from particles and structures on a surface by the coupled-dipole method,” J. Opt. Soc. Am. A 10, 912–919 (1993).
  41. B. R. Johnson, “Light scattering from a spherical particle on a conducting plane. I. Normal incidence,” J. Opt. Soc. Am. A 9, 1341–1351 (1992).
  42. B. R. Johnson, “Calculation of light scattering from a spherical particle on a surface by the multipole expansion method,” J. Opt. Soc. Am. A 13, 326–337 (1996).
  43. T. Wriedt and A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun. 152, 376–384 (1998).
  44. I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B 61, 7722–7733 (2000).
  45. T. Yamaguchi, S. Yoshuda, and A. Kinbara, “Effect of retarded dipole–dipole interactions between island particles on the optical plasma-resonance absorption of a silver-island film,” J. Opt. Soc. Am. 64, 1563–1568 (1974).
  46. T. Yamaguchi, H. Takahashi, and A. Sudoh, “Optical behavior of a metal island film,” J. Opt. Soc. Am. 68, 1039–1044 (1978).
  47. V. V. Truong and G. D. Scott, “Light scattering from aggregated noble-metal films,” J. Opt. Soc. Am. 68, 189–193 (1978).
  48. D. Bedeaux and J. Vlieger, “A statistical theory for the dielectric properties of thin island films: application and comparison with experimental results,” Thin Solid Films 102, 265–281 (1983).
  49. J. Vlieger and D. Bedeaux, “A statistical theory for the dielectric properties of thin island films,” Thin Solid Films 69, 107–130 (1980).
  50. B. N. J. Persson and A. Liebsch, “Optical properties of two-dimensional systems of randomly distributed particles,” Phys. Rev. B 28, 4247–4254 (1983).
  51. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8, 581–583 (1983).
  52. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University, New York, 1980).
  53. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).
  54. E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Ga, In, Zn, and, Cd,” J. Phys. Chem. 91, 634–643 (1987).
  55. J. C. Ku, “Comparisons of coupled-dipole solutions and dipole refractive indices for light scattering and absorption by arbitrarily shaped or agglomerated particles,” J. Opt. Soc. Am. A 10, 336–342 (1993).
  56. R. M. Emmons, B. N. Kurdi, and D. G. Hall, “Buried-oxide silicon-on-insulator structures. I. Optical waveguide characteristics,” IEEE J. Quantum Electron. 28, 157–163 (1992).
  57. E. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).
  58. Due to the factor of V in the polarizability of a small particle, the scattering cross section is proportional to V2, whereas the absorption cross section is proportional to V.
  59. B. J. Soller, H. R. Stuart, and D. G. Hall, “Energy transfer at optical frequencies to silicon-on-insulator structures,” Opt. Lett. 26, 1421–1423 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited