OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 10 — Oct. 1, 2002
  • pp: 2449–2455

Photonic bandgaps in Mie scattering by concentrically stratified spheres

David D. Smith and Kirk A. Fuller  »View Author Affiliations


JOSA B, Vol. 19, Issue 10, pp. 2449-2455 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002449


View Full Text Article

Acrobat PDF (217 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Mie formulation for homogeneous spheres is generalized to handle core–shell systems and multiple concentric layers in a manner that exploits an analogy with stratified planar systems, thereby allowing concentric multilayered structures to be treated as photonic bandgap materials. Representative results from a Mie code employing this analogy demonstrate that photonic bands are present for periodic concentric spheres, though not readily apparent in extinction spectra. Rather, the periodicity simply alters the scattering profile, which enhances the ratio of backscattering to forward scattering inside the bandgap, whereas modification of the interference structure is evident in extinction spectra in accordance with the optical theorem.

© 2002 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(260.2110) Physical optics : Electromagnetic optics
(290.4020) Scattering : Mie theory
(310.6860) Thin films : Thin films, optical properties

Citation
David D. Smith and Kirk A. Fuller, "Photonic bandgaps in Mie scattering by concentrically stratified spheres," J. Opt. Soc. Am. B 19, 2449-2455 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-10-2449


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
  2. R. Bhandari, “Scattering coefficients for a multilayered sphere: analytic expressions and algorithms,” Appl. Opt. 24, 1960–1967 (1985).
  3. D. W. Mackowski, R. A. Altenkirch, and M. P. Menguc, “Internal absorption cross sections in a stratified sphere,” Appl. Opt. 29, 1551–1559 (1990).
  4. Z. S. Wu and Y. P. Wang, “Electromagnetic scattering for multilayered sphere: recursive algorithms,” Radio Sci. 26, 1393–1401 (1991).
  5. J. Sinzig, U. Radtke, M. Quinten, and U. Kreibig, “Binary clusters: homogeneous alloys and nucleus-shell structures,” Z. Phys. D 26, 242–245 (1993).
  6. B. R. Johnson, “Light scattering by a multilayer sphere,” Appl. Opt. 35, 3286–3296 (1996).
  7. Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Grehan, “Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt. 36, 5188–5198 (1997).
  8. G. Pan, R. Kesavamoorthy, and S. A. Asher, “Optically nonlinear Bragg diffracting nanosecond optical switches,” Phys. Rev. Lett. 78, 3860–3863 (1997).
  9. A. van Blaaderen and A. Vrij, “Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres,” Langmuir 8, 2921–2931 (1992).
  10. S. Westcott, S. Oldenburg, T. R. Lee, and N. J. Halas, “Formation and adsorption of gold nanoparticle clusters on functionalized silica nanoparticle surfaces,” Langmuir 14, 5396–5401 (1998).
  11. D. B. Wolfe, S. J. Oldenburg, S. L. Westcott, J. B. Jackson, M. S. Paley, and N. J. Halas, “Photodeposition of molecular layers on nanoparticle substrates,” Langmuir 15, 2745–2748 (1999).
  12. M. Born and E. Wolf, Principles of Optics (Permagon, Oxford, 1970).
  13. K. A. Fuller, “Scattering of light by coated spheres,” Opt. Lett. 18, 257–259 (1993).
  14. J. E. McDonald, “Large-sphere limit of the radar backscattering coefficient,” Q. J. R. Meteorol. Soc. 88, 183–186 (1962).
  15. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  16. D. Braunstein, A. M. Khazanov, G. A. Koganov, and R. Shuker, “Lowering of threshold conditions for nonlinear effects in a microsphere,” Phys. Rev. A 53, 3565–3572 (1996).
  17. K. A. Fuller and D. W. Mackowski, “Electromagnetic scattering by compounded spherical particles,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, New York, 2000), pp. 225–272.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited