OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 11 — Nov. 1, 2002
  • pp: 2558–2566

Guidance and leakage properties of chiral optical fibers

Fernando M. Janeiro, Carlos R. Paiva, and António L. Topa  »View Author Affiliations


JOSA B, Vol. 19, Issue 11, pp. 2558-2566 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002558


View Full Text Article

Acrobat PDF (280 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The field theory of guided waves in optical fibers with step-index profiles and in which both core and cladding are chiral isotropic media is developed. We show that both surface and semileaky modes can propagate in optically active fibers. To shed light on the guidance and leakage properties of chiral isotropic fibers we present a physical interpretation and several numerical results. The new leakage effect associated with semileaky modes is an important property that cannot be neglected in the analysis of chiral optical fibers but that, nevertheless, has been systematically disregarded in the literature.

© 2002 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2400) Fiber optics and optical communications : Fiber properties
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation

Citation
Fernando M. Janeiro, Carlos R. Paiva, and António L. Topa, "Guidance and leakage properties of chiral optical fibers," J. Opt. Soc. Am. B 19, 2558-2566 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-11-2558


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Lakhtakia, ed., Selected Papers on Natural Optical Activity, Vol. MS15 of SPIE Milestone Series (SPIE Optical Engineering Press, Bellingham, Wash. 1990).
  2. I. V. Lindell, A. H. Sihvola, and J. Kurkijärvi, “Karl F. Lindman—the last Hertzian and a harbinger of electromagnetic chirality,” IEEE Antennas Propag. Mag. 34, 24–30 (1992).
  3. D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” J. Appl. Phys. 18, 211–216 (1979).
  4. S. A. Kuehl, S. S. Grové, E. Kuehl, M. Bingle, and J. H. Cloete, “Manufacture of microwave chiral materials and their electromagnetic properties,” in Advances in Complex Electromagnetic Materials, A. Priou, A. Sihvola, S. Tretyakov, and A. Vinogradov, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 317–332.
  5. H. Cory, “Chiral devices—an overview of canonical problems,” J. Electromagn. Waves Appl. 9, 805–829 (1995).
  6. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, Boston, Mass., 1994), pp. 119–151.
  7. C. R. Paiva and A. M. Barbosa, “A method for the analysis of biisotropic planar waveguides—application to a grounded chiroslabguide,” Electromagnetics 11, 209–221 (1991).
  8. H. Cory and I. Rosenhouse, “Electromagnetic wave propagation along a chiral slab,” IEE Proc. H 138, 51–54 (1991).
  9. M. I. Oksanen, P. K. Koivisto, and I. V. Lindell, “Dispersion curves and fields for a chiral slab waveguide,” IEE Proc. H 138, 327–334 (1991).
  10. N. Engheta and P. Pelet, “Surface waves in chiral layers,” Opt. Lett. 16, 723–725 (1991).
  11. C. R. Paiva, A. L. Topa, and A. M. Barbosa, “Semileaky waves in dielectric chirowaveguides,” Opt. Lett. 17, 1670–1672 (1992).
  12. A. L. Topa, C. R. Paiva, and A. M. Barbosa, “Least squares boundary residual method for the analysis of step discontinuities in open chiral waveguides,” Int. J. Electron. Commun. 55, 281–291 (2001).
  13. J. A. M. Svedin, “Propagation analysis of chirowaveguides using the finite-element method,” IEEE Trans. Microwave Theory Tech. 38, 1488–1496 (1990).
  14. H. Cory and T. Tamir, “Coupling processes in circular open chirowaveguides,” IEE Proc. H 139, 165–170 (1992).
  15. H. Cory and S. Gov, “Mode energy transfer along a circular open chirowaveguide,” Microwave Opt. Technol. Lett. 6, 536–541 (1993).
  16. A. K. Singh, Kh. S. Singh, P. Khastgir, S. P. Ojha, and O. N. Singh, “Modal cutoff condition of an optical chiral fiber with different chiralities in the core and the cladding,” J. Opt. Soc. Am. B 11, 1283–1287 (1994).
  17. R. C. Qiu and I-T. Lu, “Guided waves in chiral optical fibers,” J. Opt. Soc. Am. A 11, 3212–3219 (1994).
  18. S. F. Mahmoud, “Guided modes on open chirowaveguides,” IEEE Trans. Microwave Theory Tech. 43, 205–209 (1995).
  19. F. M. Janeiro, A. L. Topa, and C. R. Paiva, “Semi-leaky modes in chiral optical fibers,” presented at LEOS 2001, 14th Annual Meeting, San Diego, Calif., 2001.
  20. S. T. Peng and A. A. Oliner, “Guidance and leakage properties of a class of open dielectric waveguides. I. Mathematical formulations,” IEEE Trans. Microwave Theory Tech. MTT-29, 843–855 (1981).
  21. A. A. Oliner, S. T. Peng, T. I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides. II. New physical effects,” IEEE Trans. Microwave Theory Tech. MTT-29, 855–869 (1981).
  22. K. Yamanouchi, T. Kamiya, and K. Shibayama, “New leaky surface waves in anisotropic metal-diffused optical waveguides,” IEEE Trans. Microwave Theory Tech. MTT-26, 298–305 (1978).
  23. S. K. Sheem, W. K. Burns, and A. F. Milton, “Leaky mode propagation in Ti-diffused LiNbO3 and LiTaO3 waveguides,” Opt. Lett. 3, 76–78 (1978).
  24. J. Čtyroký and M. Čada, “Guidance and semileaky modes in anisotropic optical waveguides of LiNbO3 type,” Opt. Commun. 27, 353–357 (1978).
  25. D. Marcuse and I. P. Kaminov, “Modes of a symmetric slab optical waveguide in birefringent media. II. Slab with a coplanar optical axis,” IEEE J. Quantum Electron. QE-15, 92–101 (1979).
  26. W. K. Burns, S. K. Sheem, and A. F. Milton, “Approximate calculation of leaky-mode loss coefficients for Ti-diffused LiNbO3 waveguides,” IEEE J. Quantum Electron. QE-15, 1282–1289 (1979).
  27. J. Čtyroký and M. Čada, “Generalized WKB method for the analysis of light propagation in inhomogeneous anisotropic optical waveguides,” IEEE J. Quantum Electron. QE-17, 1064–1070 (1981).
  28. M. Koshiba, H. Kumagami, and M. Suzuki, “Finite-element solution of planar arbitrary anisotropic diffused optical waveguides,” J. Lightwave Technol. LT-3, 773–778 (1985).
  29. A. Knoesen, T. K. Gaylord, and M. G. Moharam, “Hybrid guided modes in uniaxial dielectric planar waveguides,” J. Lightwave Technol. 6, 1083–1104 (1988).
  30. L. Torner, F. Canal, and J. H. Marco, “Leaky modes in multilayer uniaxial optical waveguides,” Appl. Opt. 29, 2805–2814 (1990).
  31. L. Torner, J. Recolons, and J. P. Torres, “Guided-to-leaky mode transition in uniaxial optical slab waveguides,” J. Lightwave Technol. 11, 1592–1600 (1993).
  32. R. E. Smith and S. N. Houde-Walter, “The migration of bound and leaky solutions to the waveguide dispersion relation,” J. Lightwave Technol. 11, 1760–1768 (1993).
  33. A. D’Orazio, M. De Sario, V. Petruzzelli, and F. Prudenzano, “Leaky wave propagation in planar multilayer birefringent waveguides: longitudinal dielectric tensor configurations,” J. Lightwave Technol. 12, 453–462 (1994).
  34. T. A. Maldonado and T. K. Gaylord, “Hybrid guided modes in biaxial planar waveguides,” J. Lightwave Technol. 14, 486–499 (1996).
  35. R. E. Collin, Field Theory of Guided Waves, 2nd ed., (IEEE Press, New York, 1991), pp. 725–744.
  36. E. U. Condon, “Theory of optical rotatory power,” Rev. Mod. Phys. 9, 432–457 (1937).
  37. A. H. Sihvola and I. V. Lindell, “Bi-isotropic constitutive relations,” Microwave Opt. Technol. Lett. 4, 295–297 (1991).
  38. A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific, Singapore, 1994).
  39. A. Lakhtakia and W. S. Weiglhofer, “Are linear, nonreciprocal, biisotropic media forbidden?” IEEE Trans. Microwave Theory Tech. 42, 1715–1716 (1994).
  40. A. Lakhtakia and W. S. Weiglhofer, “Constraint on linear, homogeneous constitutive relations,” Phys. Rev. E 50, 5017–5019 (1994).
  41. W. S. Weiglhofer and A. Lakhtakia, “A brief review of a new development for constitutive relations for linear bi-anisotropic media,” IEEE Antennas Propag. Mag. 37, 32–35 (1995).
  42. W. S. Weiglhofer and A. Lakhtakia, “The Post constraint revisited,” Int. J. Electron. Commun. 52, 276–279 (1998).
  43. E. J. Post, Formal Structure of Electromagnetics—General Covariance and Electromagnetics (Dover, Mineola, N.Y., 1997), pp. 129, 168–171.
  44. A. H. Sihvola, “Are nonreciprocal bi-isotropic media forbidden indeed?” IEEE Trans. Microwave Theory Tech. 43, 2160–2162 (1995).
  45. S. Tretyakov, “Anything wrong with the naturally non-reciprocal materials?” IEEE Antennas Propag. Mag. 38, 84–85 (1996).
  46. J. C. Monzon, “Author’s reply,” IEEE Trans. Antennas Propag. 45, 749 (1997).
  47. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, Boston, Mass., 1994), pp. 23–58.
  48. A. Lakhtakia, “Recent contributions to classical electromagnetic theory of chiral media: what next?” Speculations Sci. Technol. 14, 2–17 (1991).
  49. M. J. Adams, An Introduction to Optical Waveguides (Wiley, Chichester, UK, 1981), pp. 223–228.
  50. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), pp. 248–259.
  51. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1965), Eq. (9.7.2).
  52. M. P. Carpentier and A. F. dos Santos, “Solution of equations involving analytic functions,” J. Comput. Phys. 45, 210–220 (1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited