OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 11 — Nov. 1, 2002
  • pp: 2595–2602

Generation of a slow and continuous cesium atomic beam for an atomic clock

Sang Eon Park, Ho Seong Lee, Eun-joo Shin, Taeg Yong Kwon, Sung Hoon Yang, and Hyuck Cho  »View Author Affiliations

JOSA B, Vol. 19, Issue 11, pp. 2595-2602 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (657 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A thermal atomic beam from a cesium oven was slowed down by use of the Hoffnagle modified white-light cooling technique. In addition, the atomic beam was collimated by use of a two-dimensional optical molasses that was installed transverse to the atomic-beam direction. The flux of the atomic beam was 2×1010 atoms/s, an increase of a factor of 16 as a result of the collimation. The mean longitudinal velocity was ∼24.4 m/s, and the rms velocity spread of the slowed atomic beam was ∼1 m/s. Compared with other methods, we found that the Hoffnagle method is suitable for the generation of slow atomic beams to be used in an atomic clock, which requires an ultralow magnetic field environment. This atomic beam was deflected by an angle of 30° by a one-dimensional optical molasses to separate it from laser light and high-velocity atoms.

© 2002 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(060.5060) Fiber optics and optical communications : Phase modulation
(140.3320) Lasers and laser optics : Laser cooling

Sang Eon Park, Ho Seong Lee, Eun-joo Shin, Taeg Yong Kwon, Sung Hoon Yang, and Hyuck Cho, "Generation of a slow and continuous cesium atomic beam for an atomic clock," J. Opt. Soc. Am. B 19, 2595-2602 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Wineland, W. M. Itano, J. C. Bergquist, and R. G. Hulet, “Laser-cooling limits and single-ion spectroscopy,” Phys. Rev. A 36, 2220–2232 (1987). [CrossRef] [PubMed]
  2. A. Witte, Th. Kisters, F. Riehle, and J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992). [CrossRef]
  3. H. R. Thorsheim, Y. Wang, and J. Weiner, “Cold collisions in an atomic beam,” Phys. Rev. A 41, 2873–2876 (1990). [CrossRef] [PubMed]
  4. H. S. Lee, S. E. Park, T. Y. Kwon, S. H. Yang, and H. Cho, “Toward a cesium frequency standard based on a continuous slow atomic beam: preliminary results,” IEEE Trans. Instrum. Meas. 50, 531–534 (2001). [CrossRef]
  5. G. Dudle, A. Joyet, P. Berthoud, G. Mileti, and P. Thomann, “First results with a cold cesium continuous fountain resonator,” IEEE Trans. Instrum. Meas. 50, 510–514 (2001). [CrossRef]
  6. W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996–999 (1985). [CrossRef] [PubMed]
  7. R. N. Watts and C. E. Wieman, “Manipulating atomic velocities using diode lasers,” Opt. Lett. 11, 291–293 (1986). [CrossRef] [PubMed]
  8. J. V. Prodan, W. D. Phillips, and H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149–1153 (1982). [CrossRef]
  9. J. V. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992–995 (1985). [CrossRef] [PubMed]
  10. F. Lison, P. Schuh, D. Haubrich, and D. Meschede, “High-brilliance Zeeman-slowed cesium atomic beam,” Phys. Rev. A 61, 013405 (2000). [CrossRef]
  11. T. V. Zueva and V. G. Minogin, “Optimum slowing of atoms by a resonant laser beam,” Pis'ma Zh. Tekh. Fiz. 7, 953–956 (1981).
  12. L. Moi, “Application of a very long cavity laser to atom slowing down and optical pumping,” Opt. Commun. 50, 349–352 (1984). [CrossRef]
  13. P. Strohmeier, T. Kersebom, E. Kruger, H. Nolle, and B. Steuter, “Na-atom beam deceleration by a mode-locked laser,” Opt. Commun. 73, 451–454 (1989). [CrossRef]
  14. S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54, 428–433 (1992). [CrossRef]
  15. Y. Chan and N. D. Bhaskar, “Cooling of cesium atomic beam with light from spectrally broadened diode lasers,” J. Opt. Soc. Am. B 12, 2347–2351 (1995). [CrossRef]
  16. S. N. Atutov, F. Bonazzi, R. Calabrese, V. Guidi, P. Lenisa, S. Petruio, E. Mariotti, and L. Moi, “Generation of a frequency comb with a sharp edge of adjustable intensity and frequency,” Opt. Commun. 132, 269–274 (1996). [CrossRef]
  17. S. N. Atutov, R. Calabrese, R. Grimm, V. Guidi, I. Lauer, P. Lenisa, V. Luger, E. Mariotti, L. Moi, A. Peters, U. Schramm, and M. Stössel, “White-light laser cooling of a fast stored ion beam,” Phys. Rev. Lett. 80, 2129–2132 (1998). [CrossRef]
  18. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996). [CrossRef] [PubMed]
  19. K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, “Two-dimensional magneto-optical trap as a source of slow atoms,” Phys. Rev. A 58, 3891–3895 (1998). [CrossRef]
  20. P. Berthoud, E. Fretel, and P. Thomann, “Bright, slow, and continuous beam of laser-cooled cesium atoms,” Phys. Rev. A 60, R4241–R4244 (1999). [CrossRef]
  21. J. Hoffnagle, “Proposal for continuous white-light cooling of an atomic beam,” Opt. Lett. 13, 102–104 (1988). [CrossRef] [PubMed]
  22. M. Zhu, C. W. Oates, and J. L. Hall, “Continuous high-flux monovelocity atomic beam based on a broadband laser-cooling technique,” Phys. Rev. Lett. 67, 46–49 (1991). [CrossRef] [PubMed]
  23. A. S. Parkins and P. Zoller, “Laser cooling of atoms with broadband real Gaussian laser fields,” Phys. Rev. A 45, 6522–6538 (1992). [CrossRef] [PubMed]
  24. R. Ohmukai, H. Imajo, K. Hayasaka, U. Tanaka, M. Watanabe, and S. Urabe, “Isotope-selected measurements of the velocity-controlled Yb atomic beam,” Appl. Phys. B 64, 547–551 (1997). [CrossRef]
  25. M. Watanabe, R. Ohmukai, U. Tanaka, K. Hayasaka, H. Imajo, and S. Urabe, “Velocity control of a Yb beam by a frequency-doubled mode-locked laser,” J. Opt. Soc. Am. B 13, 2377–2381 (1996). [CrossRef]
  26. V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms (Gordon & Breach, New York, 1987).
  27. S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192, 49–55 (2001). [CrossRef]
  28. M. A. Joffe, W. Ketterle, A. G. Martin, and D. E. Pritchard, “Transverse cooling and deflection of an atomic beam inside a Zeeman slower,” J. Opt. Soc. Am. B 10, 2257–2262 (1993). [CrossRef]
  29. A. Aspect, N. Vansteenkiste, and R. Kaiser, “Preparation of a pure intense beam of metastable helium by laser cooling,” Chem. Phys. 145, 307–315 (1990). [CrossRef]
  30. M. D. Hoogerland, J. P. J. Driessen, E. J. D. Vredenbregt, H. J. L. Megens, M. P. Schuwer, H. C. W. Beijerinck, and K. A. H. van Leeuwen, “Bright thermal atomic beams by laser cooling: a 1400-fold gain in beam flux,” Appl. Phys. B 62, 323–327 (1996). [CrossRef]
  31. S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Collimation of a beam of caesium atoms by optical molasses, with resulting reduction in longitudinal beam velocity,” Opt. Commun. 192, 47–63 (2001). [CrossRef]
  32. A. Witte, Th. Kisters, F. Riehle, and J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992). [CrossRef]
  33. H. S. Moon, J. B. Kim, S. E. Park, H. Cho, T. Y. Kwon, S. H. Yang, and H. S. Lee, “Coherent population transfer by using adiabatic following in a cooled atomic Cs beam,” J. Korean Phys. Soc. 37, 680–684 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited