OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 11 — Nov. 1, 2002
  • pp: 2622–2631

dc and ac Electro-optic response of chromophores in a viscoelastic polymer matrix: analytical model

Thomas G. Pedersen, Kim Jespersen, Per M. Johansen, and John Wyller  »View Author Affiliations

JOSA B, Vol. 19, Issue 11, pp. 2622-2631 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an analytical model of the influence of a polymer matrix on the electro-optical and second-order nonlinear optical response of polymer films. The interaction between the chromophores and the matrix is characterized by a local molecular field with a randomly varying orientation throughout the polymer volume. The macroscopic properties of the polymer are subsequently obtained by averaging over the fluctuating direction of the field. We consider the influence of the polymer matrix on both static and dynamic properties. In both cases, our results are valid at arbitrarily large field strengths because we avoid resorting to usual expansion techniques. The mathematically demanding ac case is treated in a variational approach, and results for the frequency dependent electro-optic response are presented. The model is found to be in qualitative agreement with the observed temperature dependence of the frequency dependent electro-optic response of a Disperse Red 1/poly(methyl methacrylate) guest/host polymer if an exponentially decreasing molecular field is assumed.

© 2002 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(250.2080) Optoelectronics : Polymer active devices
(260.1440) Physical optics : Birefringence

Thomas G. Pedersen, Kim Jespersen, Per M. Johansen, and John Wyller, "dc and ac Electro-optic response of chromophores in a viscoelastic polymer matrix: analytical model," J. Opt. Soc. Am. B 19, 2622-2631 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Beams, “Electric and magnetic double refraction,” Rev. Mod. Phys. 1, 133–160 (1932). [CrossRef]
  2. C. G. LeFevre and R. J. W. LeFevre, “The Kerr effect. Its measurement and application in chemistry,” Rev. Pure Appl. Chem. 5, 261–318 (1955).
  3. A. J. Nicastro and P. H. Keyes, “Electric-field-induced critical phenomena at the nematic–isotropic transition and the nematic–isotropic critical point,” Phys. Rev. A 30, 3156–3160 (1984). [CrossRef]
  4. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987). [CrossRef]
  5. K. D. Singer and L. A. King, “Relaxation phenomena in polymer nonlinear optical materials,” J. Appl. Phys. 70, 3251–3255 (1991). [CrossRef]
  6. M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–858 (1990). [CrossRef]
  7. M. G. Kuzyk, “Relationship between the molecular and bulk response,” in Measurement Techniques and Tabulations of Organic Nonlinear Optical Materials, M. G. Kuzyk and C. W. Dirk, eds. (Marcel Dekker, New York 1998), pp. 111–220.
  8. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994). [CrossRef]
  9. Sandalphon, B. Kippelen, K. Meerholz, and N. Peygham-barian, “Ellipsometric measurements of poling birefringence, the Pockels effect, and the Kerr effect in high-performance photorefractive polymer composites,” Appl. Opt. 35, 2346–2354 (1996). [CrossRef]
  10. T. Goodson III and C. H. Wang, “Dispersion and dipolar orientational effects on the linear electroabsorption and electro-optic responses in model guest/host nonlinear optical systems,” J. Appl. Phys. 80, 6602–6609 (1996). [CrossRef]
  11. W. N. Herman and J. A. Cline, “Chielectric relaxation: chromophore dynamics in an azo-dye-doped polymer,” J. Opt. Soc. Am. B 15, 351–358 (1998). [CrossRef]
  12. R. D. Dureiko, D. E. Schuele, and K. D. Singer, “Modeling relaxation processes in poled electro-optic polymer films,” J. Opt. Soc. Am. B 15, 338–350 (1998). [CrossRef]
  13. B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Chang, G. Todorova, M. Lee, R. Aniszfeld, S. Garder, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999). [CrossRef]
  14. F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng–Man technique,” Chem. Phys. 245, 311–326 (1999). [CrossRef]
  15. J. W. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. Am. B 8, 142–151 (1991). [CrossRef]
  16. F. Michelotti and E. Toussaere, “Pulse poling of side-chain and crosslinkable copolymers,” J. Appl. Phys. 82, 5728–5744 (1997). [CrossRef]
  17. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994). [CrossRef]
  18. I. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, San Diego, Calif., 1994), p. 1031.
  19. W. T. Coffey and S. G. McGoldrick, “Inertial effects in the theory of dielectric and Kerr effect relaxation on an assembly of non-interacting polar molecules in strong alternating fields,” Chem. Phys. 120, 1–35 (1988). [CrossRef]
  20. J. L. Déjardin, P. M. Déjardin, and Yu. P. Kalmykov, “Nonlinear electro-optic response. I. Steady-state Kerr effect relaxation arising from a weak ac electric field superimposed on a strong dc bias field,” J. Chem. Phys. 106, 5824–5831 (1997). [CrossRef]
  21. J. L. Déjardin, P. M. Déjardin, and Yu. P. Kalmykov, “Analytical solutions for the dynamic Kerr effect: Linear response of polar and polarizable molecules to a weak ac electric field superimposed on a strong dc bias field,” J. Chem. Phys. 107, 508–523 (1997). [CrossRef]
  22. T. Verbiest and D. M. Burland, “Use of the Wagner function to describe poled-order relaxation processes in electrooptic polymers,” Chem. Phys. Lett. 236, 253–258 (1995). [CrossRef]
  23. E. Hendrickx, B. D. Guenther, Y. Zhang, J. F. Wang, K. Staub, Q. Zhang, S. R. Marder, B. Kippelen, and N. Peyghambarian, “Ellipsometric determination of the electric-field-induced birefringence of photorefractive dyes in a liquid carbazole derivative,” Chem. Phys. 245, 407–415 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited