OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 11 — Nov. 1, 2002
  • pp: 2673–2681

Contributions of permanent dipole moments to molecular multiphoton excitation cross sections

B. N. Jagatap and William J. Meath  »View Author Affiliations

JOSA B, Vol. 19, Issue 11, pp. 2673-2681 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (183 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The role of both permanent molecular dipoles and virtual molecular states, for two- and three-photon molecular excitation, is discussed in the context of the two- and three-photon excitation cross sections, with a ten-energy-level giant-dipole molecule as a model. Two types of excitation mechanisms are involved, that which requires permanent dipole moments and that which requires virtual molecular excited states. The results are relevant to the understanding of two- and three-photon excitation processes and for the design of fluorophores with large multiphoton absorption cross sections.

© 2002 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4180) Nonlinear optics : Multiphoton processes
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

B. N. Jagatap and William J. Meath, "Contributions of permanent dipole moments to molecular multiphoton excitation cross sections," J. Opt. Soc. Am. B 19, 2673-2681 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Göppert-Mayer, “Uber Elementarakte mit zwei Quantensprüngen,” Ann. Phys. (Leipzig) 9, 273–295 (1931). [CrossRef]
  2. G. F. Thomas and W. J. Meath, “Multi-photon vibrational resonances with modulation effects, using HeXe, NeAr and NeXe as models,” Mol. Phys. 46, 743–755 (1982). [CrossRef]
  3. G. F. Thomas and W. J. Meath, “Multi-photon vibrational resonances with modulation effects, using HeXe, NeAr and NeXe as models—Erratum,” Mol. Phys. 48, 649–650 (1983).
  4. B. Dick and G. Hohlneicher, “Importance of initial and final states as intermediate states in two-photon spectroscopy of polar molecules,” J. Chem. Phys. 76, 5755–5760 (1982). [CrossRef]
  5. W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation theory,” J. Phys. B 17, 763–781 (1984). [CrossRef]
  6. M. A. Kmetic and W. J. Meath, “Permanent dipole moments and multi-photon resonances,” Phys. Lett. 108A, 340–343 (1985). [CrossRef]
  7. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  8. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral window for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93, 10763–10768 (1996). [CrossRef]
  9. A. Jenei, A. K. Krisch, V. Subramaniam, D. J. Arndt-Jovin, and T. M. Jovin, “Picosecond multiphoton scanning near-field optical microscopy,” Biophys. J. 76, 1092–1100 (1999). [CrossRef] [PubMed]
  10. I. Gryczynski, H. Malak, and J. R. Lakowicz, “Three-photon induced fluorescence of 2, 5-diphenyloxazole with a femtosecond Ti: sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995). [CrossRef]
  11. R. P. Birge, “One-photon and two-photon excitation spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, ed. (Academic, New York, 1983), pp. 109–174.
  12. G. S. He, R. Gvishi, P. N. Prasad, and B. A. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995). [CrossRef]
  13. G. S. He, J. Swiatkiewicz, Y. Jiang, P. N. Prasad, B. A. Reinhardt, L.-S. Tan, and R. Kannan, “Two-photon excitation and optical spatial profile reshaping via a nonlinear absorbing medium,” J. Phys. Chem. A 104, 4805–4810 (2000). [CrossRef]
  14. D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989). [CrossRef] [PubMed]
  15. J. H. Strickler and W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991). [CrossRef] [PubMed]
  16. Y. Shen, J. Swiatkiewicz, D. Jakubczyk, F. Xu, P. N. Prasad, R. A. Vaia, and B. A. Reinhardt, “High density optical data storage with one-photon and two-photon near-field fluorescence microscopy,” Appl. Opt. 40, 938–940 (2001). [CrossRef]
  17. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001). [CrossRef] [PubMed]
  18. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996). [CrossRef]
  19. M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37, 7352–7356 (1998). [CrossRef]
  20. J. Zhou, E. Y. B. Pun, and X. H. Zhang, “Nonlinear optical refractive indices and absorption coefficients of α, β-unsaturated ketone derivatives,” J. Opt. Soc. Am. B 18, 1456–1463 (2001). [CrossRef]
  21. A. A. Adronov, J. M. J. Fréchet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, and P. N. Prasad, “Novel two-photon absorbing dendritic structures,” Chem. Mater. 12, 2838–2841 (2000); this paper contains a detailed list of relevant references. [CrossRef]
  22. M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998). [CrossRef] [PubMed]
  23. T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, and J. L. Brédas, “Mechanisms for enhancement of two-photon absorption in donor-acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998). [CrossRef]
  24. M. Barzoukas and M. Blanchard-Desce, “Molecular engineering of push-pull dipolar and quadrupolar molecules for two-photon absorption: a multivalence-bond states approach,” J. Chem. Phys. 113, 3951–3959 (2000). [CrossRef]
  25. Y. Zhou, F. Meng, X. Zhao, D. Xu, and M. Jiang, “Two-photon absorption properties of a new series of 2CTσ chromophores,” Solid State Commun. 116, 605–608 (2000). [CrossRef]
  26. L. Ventelon, L. Moreaux, J. Mertz, and M. Blanchard-Desce, “New quadrupole fluorophores with high two-photon excited fluorescence,” Chem. Commun., 2055–2056 (1999). [CrossRef]
  27. D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1987).
  28. J. L. Bredás and R. R. Chance, eds., Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics and Molecular Electronics (Kluwer Academic, Dordrecht, The Netherlands, 1990).
  29. J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment,” J. Chem. Phys. 66, 2664–2668 (1977). [CrossRef]
  30. R. R. Birge and B. M. Pierce, “A theoretical analysis of the two-photon properties of linear polyenes and the visual chromophores,” J. Chem. Phys. 70, 165–178 (1979). [CrossRef]
  31. T. Kobayashi, E. O. Degenkolb, and P. M. Rentzepis, “Lifetime measurements of 4-diethylamino-4-nitrostilbene fluorescence by picosecond optical amplifications,” J. Appl. Phys. 50, 3118–3121 (1979). [CrossRef]
  32. T. Kobayashi, M. Terauchi, and H. Uchiki, “Lasing properties and gain spectrum of 4-diethylamino-4-nitrostilbene with a giant dipole,” Chem. Phys. Lett. 126, 143–148 (1986). [CrossRef]
  33. A. E. Stiegman, V. M. Miskowski, J. W. Perry, and D. R. Coulter, “A series of donor–acceptor molecules of the form NH2(C6H4)(C☰C)n(C6H4)NO2. Unusual effects of varying n,” J. Am. Chem. Soc. 109, 5884–5886 (1987). [CrossRef]
  34. T. Hattori and T. Kobayashi, “Bloch–Siegert shift in giant dipole molecules,” Phys. Rev. A 35, 2733–2736 (1987). [CrossRef] [PubMed]
  35. M. A. Kmetic and W. J. Meath, “Perturbative correction to the rotating-wave approximations for two-level molecules and effects of permanent dipoles on single-photon and multiphoton spectra,” Phys. Rev. A 41, 1556–1568 (1990). [CrossRef] [PubMed]
  36. C. B. Gorman and S. R. Marder, “An investigation of the interrelationships between linear and nonlinear polarizabilities and bond-length alternation in conjugated organic molecules,” Proc. Natl. Acad. Sci. USA 90, 11297–11301 (1993). [CrossRef] [PubMed]
  37. S. H. Nilar, A. J. Thakkar, A. E. Kondo, and W. J. Meath, “Electronic energies, dipole moment matrix elements, and static polarizabilities and hyperpolarizabilities for some diphenyl molecules,” Can. J. Chem. 71, 1663–1671 (1993). [CrossRef]
  38. D. L. Andrews and W. J. Meath, “On the role of permanent dipoles in second harmonic generation,” J. Phys. B 26, 4633–4641 (1993). [CrossRef]
  39. A. E. Kondo, W. J. Meath, S. H. Nilar, and A. J. Thakkar, “Pump-probe studies of the effects of permanent dipoles in one- and two-colour molecular excitations,” Chem. Phys. 186, 375–394 (1994). [CrossRef]
  40. S. R. Marder, L.-T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Skindhoj, “Large first hyperpolarizabilities in push-pull polyenes by tuning of the bond length alternation and aromaticity,” Science 264, 511–514 (1994). [CrossRef]
  41. F. Meyers, S. R. Marder, B. M. Pierce, and J. L. Bredas, “Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation,” J. Am. Chem. Soc. 116, 10703–10714 (1994). [CrossRef]
  42. A. E. Kondo and W. J. Meath, “On the spectral and dynamical effects of near-nodal molecule—EMF coupling arising from permanent dipole moments,” Mol. Phys. 92, 805–812 (1997), and references therein.
  43. I. Gryczynski, H. Szmacinski, and J. R. Lakowicz, “On the possibility of calcium imaging using INDO-1 with three-photon excitation,” Photochem. Photobiol. 62, 804–808 (1995). [CrossRef] [PubMed]
  44. A. P. Davey, E. Bourdin, F. Henari, and W. Blau, “Three photon induced fluorescence from a conjugated organic polymer for infrared frequency upconversion,” Appl. Phys. Lett. 67, 884–885 (1995). [CrossRef]
  45. G. S. He, J. D. Bhawalkar, P. N. Prasad, and B. A. Reinhardt, “Three-photon-absorption-induced fluorescence and optical limiting effects in an organic compound,” Opt. Lett. 20, 1524–1526 (1995). [CrossRef] [PubMed]
  46. H. Szmacinski, I. Gryczynski, and J. R. Lakowicz, “Three-photon induced fluorescence of the calcium probe Indo-1,” Biophys. J. 70, 547–555 (1996). [CrossRef] [PubMed]
  47. I. Gryczynski, H. Malak, J. R. Lakowicz, H. C. Cheung, J. Robinson, and P. K. Umeda, “Fluorescence spectral properties of troponin C mutant F22W with one-, two-, and three-photon excitation,” Biophys. J. 71, 3448–3453 (1996). [CrossRef] [PubMed]
  48. J. B. Shear, E. B. Brown, and W. W. Webb, “Multiphoton-excited fluorescence of fluorogen-labeled neurotransmitters,” Anal. Chem. 68, 1778–1783 (1996). [CrossRef] [PubMed]
  49. J. R. Lakowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, and S. W. Hell, “Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAPI and Hoechst 33342 using three-photon excitation,” Biophys. J. 72, 567–578 (1997). [CrossRef] [PubMed]
  50. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997). [CrossRef] [PubMed]
  51. R. M. Williams, J. B. Shear, W. R. Zipfel, S. Maiti, and W. W. Webb, “Mucosal mast cell secretion processes imaged using three-photon microscopy of 5-hydroxytryptamine autofluorescence,” Biophys. J. 76, 1835–1846 (1999). [CrossRef] [PubMed]
  52. S. Singh and L. T. Bradley, “Three-photon absorption in napthalene crystals by laser excitation,” Phys. Rev. Lett. 12, 612–614 (1964). [CrossRef]
  53. J. N. Shirley, “Solution of the Schrödinger equation with a Hamiltonian periodic in time,” Phys. Rev. B 138, 979–987 (1965). [CrossRef]
  54. R. Pantell, F. Pradere, J. Hanus, M. Schott, and H. Puthoff, “Theoretical and experimental values for two-, three-, and four-photon absorptions,” J. Chem. Phys. 46, 3507–3511 (1967). [CrossRef]
  55. R. Gush and H. P. Gush, “Scattering of intense light by a two-level system,” Phys. Rev. A 6, 129–140 (1972). [CrossRef]
  56. S. Stenholm, “Saturation effects in RF spectroscopy. I. General theory,” J. Phys. B 5, 878–889 (1972). [CrossRef]
  57. J. V. Moloney and W. J. Meath, “Phase and temporal average transition probabilities for a multi-level system in a sinusoidal field,” Mol. Phys. 31, 1537–1548 (1976). [CrossRef]
  58. D. L. Andrews and W. A. Ghoul, “Polarisation studies in multiphoton absorption spectroscopy,” J. Chem. Phys. 75, 530–538 (1981). [CrossRef]
  59. W. M. McClain and R. A. Harris, “Two-photon molecular spectroscopy in liquids and gases,” in Excited States, E. C. Lim, ed. (Academic, New York, 1977), pp. 2–55.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited