OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 11 — Nov. 1, 2002
  • pp: 2692–2703

Electro-optic sensors for electric field measurements. I. Theoretical comparison among different modulation techniques

Lionel Duvillaret, Stéphane Rialland, and Jean-Louis Coutaz  »View Author Affiliations


JOSA B, Vol. 19, Issue 11, pp. 2692-2703 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002692


View Full Text Article

Acrobat PDF (358 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a complete analysis of electro-optic sensors for electric field measurement based on three different modulation techniques: amplitude, phase, and polarization state modulation. We treat the most general case, considering both isotropic and anisotropic crystals and taking into account the absorption of the crystal. We derive the optimal configuration of experimental setups for the three studied modulation techniques, and we give the values of the variable physical parameters required to yield the best performance. Finally we compare the three modulation techniques and show that phase or polarization state modulations result in exactly the same performance while amplitude modulation gives slightly enhanced performance.

© 2002 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(230.2090) Optical devices : Electro-optical devices

Citation
Lionel Duvillaret, Stéphane Rialland, and Jean-Louis Coutaz, "Electro-optic sensors for electric field measurements. I. Theoretical comparison among different modulation techniques," J. Opt. Soc. Am. B 19, 2692-2703 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-11-2692


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. A. Valdmanis, G. A. Mourou, and C. W. Gabel, “Subpicosecond electrical sampling,” IEEE J. Quantum Electron. 19, 664–667 (1983).
  2. B. H. Kolner and D. M. Bloom, “Electro-optic sampling in GaAs integrated circuits,” IEEE J. Quantum Electron. 22, 79–93 (1986).
  3. Z. Jiang and X.-C. Zhang, “Terahertz imaging via electro-optic effect,” IEEE Trans. Microwave Theory Tech. 47, 2644–2650 (1999).
  4. M. S. Litz, D. C. Judy, G. A. Huttlin, C. Lazard, L. F. Libelo, X.-C. Zhang, and Z. Lu, “A wideband, dielectric, electric field sensor,” in Intense Microwave Pulses V, H. E. Brandt, ed., Proc. SPIE 3158, 72–78 (1997).
  5. W. Thomann, M. Rottenkolber, and P. Russer, “Optimization of electro-optic sampling by volume-integral method,” IEEE Trans. Microwave Theory Tech. 41, 2393–2399 (1993).
  6. Z. Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
  7. D. M. Zhang, M. B. Yi, X. J. Tian, W. Sun, A. L. Hou, J. Z. Sun, Y. G. Ma, W. J. Tian, and J. C. Shen, “External electro-optic measurement utilizing poled polymer-based asymmetric Fabry–Perot reflection film,” J. Appl. Phys. 86, 6184–6188 (1999).
  8. Q. Chen, M. Tani, Z. Jiang, and X.-C. Zhang, “Electro-optic transceivers for terahertz-wave applications,” J. Opt. Soc. Am. B 18, 823–831 (2001).
  9. L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimization of their orientations,” J. Opt. Soc. Am. B 19, 2704–2715 (2002).
  10. Z. Jiang and X.-C. Zhang, “Single-shot spatiotemporal terahertz field imaging,” Opt. Lett. 23, 1114–1116 (1998).
  11. S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi, and M. Tsuchiya, “Fiber-edge electro-optic/magneto-optic probe for spectral-domain analysis of electromagnetic field,” IEEE Trans. Microwave Theory Tech. 48, 2611–2616 (2000).
  12. J. Latess, C. J. Lazard, “High-power, integrated photonic, electric field sensor,” in Intense Microwave Pulses V, H. E. Brandt, ed., Proc. SPIE 3158, 79–84 (1997).
  13. P. O. Müller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An external electro-optic sampling technique based on the Fabry–Perot effect,” IEEE J. Quantum Electron. 35, 7–11 (1999).
  14. A. Sasaki and T. Nagatsuma, “Millimeter-wave imaging using an electro-optic detector as a harmonic mixer,” IEEE J. Sel. Top. Quantum Electron. 6, 735–740 (2000).
  15. F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N, N-dimethylamino-4-N-methylstilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).
  16. A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), pp. 16–29.
  17. J.-P. Perez, Optique, 5th ed. (Masson, Paris, 1996), pp. 210–226.
  18. J.-P. Perez, Optique, 5th ed. (Masson, Paris, 1996), pp. 321–326.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited