OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 11 — Nov. 1, 2002
  • pp: 2727–2736

Influence of classical pump noise on long-pulse multiorder stimulated Raman scattering in optical fiber

Leticia Garcia, James Jenkins, Yoon Lee, Nicholas Poole, Ken Salit, Panagiotis Sidereas, Christopher G. Goedde, and John R. Thompson  »View Author Affiliations


JOSA B, Vol. 19, Issue 11, pp. 2727-2736 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002727


View Full Text Article

Enhanced HTML    Acrobat PDF (260 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a combined experimental and theoretical study of the effect of pump pulse noise on the growth and statistics of multiorder stimulated Raman scattering in optical fiber. Because of the intensity dependence of stimulated Raman scattering, fluctuations in the detailed temporal structure of the pump pulse amplitude strongly affect the growth and statistics of the Stokes orders, even when dispersive effects are not important. By comparing experimental results with a detailed model including the frequency dependence of the Raman gain and the pump pulse temporal structure, we show that the pump pulse temporal fluctuations play a pivotal role in determining the growth and pulse energy statistics of the Stokes orders.

© 2002 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(290.5910) Scattering : Scattering, stimulated Raman

Citation
Leticia Garcia, James Jenkins, Yoon Lee, Nicholas Poole, Ken Salit, Panagiotis Sidereas, Christopher G. Goedde, and John R. Thompson, "Influence of classical pump noise on long-pulse multiorder stimulated Raman scattering in optical fiber," J. Opt. Soc. Am. B 19, 2727-2736 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-11-2727


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Emori, K. Tanaka, and S. Namiki, “100-nm-bandwidth flat-gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel wdm laser diode unit,” Electron. Lett. 35, 1355–1356 (1999). [CrossRef]
  2. D. V. Gapontsev, S. V. Chernikov, and J. R. Taylor, “Fiber Raman amplifiers for broadband operation at 1.3 μm,” Opt. Commun. 166, 85–88 (1999). [CrossRef]
  3. M. Prabhua, N. S. Kim, L. Jianrena, and K.-I. Ueda, “Simultaneous two-color cw Raman fiber laser with maximum output power of 1.05 W/1239 nm and 0.95 W/1484 nm using phosphosilicate fiber,” Opt. Commun. 182, 305–309 (2000). [CrossRef]
  4. S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman fiber laser operating at 1.24 μm,” Electron. Lett. 34, 680–681 (1998). [CrossRef]
  5. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Fiber-optic tunable cw Raman laser operating around 1.3 μm,” Opt. Commun. 182, 403–405 (2000). [CrossRef]
  6. G. A. Thomas, B. I. Shraiman, P. F. Glodls, and M. J. Stephens, “Toward the clarity limit in optical fibre,” Nature 404, 262–264 (2000). [CrossRef] [PubMed]
  7. G. A. Thomas, D. A. Ackerman, P. R. Pruncnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53, 30–36 (2000). [CrossRef]
  8. R. G. Smith, “Optical power handling capacity of low-loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972). [CrossRef] [PubMed]
  9. J. Auyeung and A. Yariv, “Spontaneous and stimulated Raman scattering in long low-loss fibers,” IEEE J. Quantum Electron. 14, 347–352 (1978). [CrossRef]
  10. F. R. Barbosa, “Quasi-stationary multiple stimulated Raman generation in the visible using optical fibers,” Appl. Opt. 22, 3859–3863 (1983). [CrossRef] [PubMed]
  11. R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984). [CrossRef]
  12. K. X. Liu and E. Garmire, “Understanding the formation of the SRS Stokes spectrum in fused silica fibers,” IEEE J. Quantum Electron. 27, 1022–1030 (1991). [CrossRef]
  13. J. Morita and T. Yoshimura, “Analytical characteristics of stimulated Raman scattering in a multimode fiber obtained with an optical time-domain reflectometer,” Appl. Opt. 34, 6136–6143 (1995). [CrossRef] [PubMed]
  14. E. A. Kuzin, G. Beltran-Perez, M. A. Basurto-Pensado, R. Rojas-Laguna, J. A. Andrade-Lucio, M. Torres-Cisneros, and E. Alvarado-Mendez, “Stimulated Raman scattering in a fiber with bending loss,” Opt. Commun. 169, 87–91 (1999). [CrossRef]
  15. C. Yijiang and A. W. Snyder, “Saturation and depletion effect of Raman scattering in optical fibers,” J. Lightwave Technol. 7, 1109–1116 (1989). [CrossRef]
  16. W. P. Urquhart and P. J. R. Laybourn, “Stimulated Raman scattering in optical fibers with nonconstant loss: a multiwavelength model,” Appl. Opt. 25, 2592–2599 (1986). [CrossRef]
  17. H.-S. Seo and K. Oh, “Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration in the core,” Opt. Commun. 181, 145–151 (2000). [CrossRef]
  18. R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fiber,” Proc. IEEE 78, 1344–1368 (1990). [CrossRef]
  19. L. Garcia, A. Jalili, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde, and J. R. Thompson, “Effects of pump pulse temporal structure on long-pulse multiorder stimulated Raman scattering in optical fiber,” Opt. Commun. 193, 289–300 (2001). [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, 1995).
  21. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976). [CrossRef]
  22. L. G. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. 14, 855–859 (1978). [CrossRef]
  23. Pei juan Gao, Cao jiang Nie, Tian long Yang, and Hai zheng Su, “Stimulated Raman scattering up to ten orders in an optical fiber,” Appl. Phys. 24, 303–306 (1981). [CrossRef]
  24. I. A. Walmsley and M. G. Raymer, “Observation of macroscopic quantum fluctuations in stimulated Raman scattering,” Phys. Rev. Lett. 50, 962–965 (1983). [CrossRef]
  25. N. Fabricius, K. Nattermann, and D. von der Linde, “Macroscopic manifestations of quantum fluctuations in transient stimulated Raman scattering,” Phys. Rev. Lett. 52, 113–116 (1984). [CrossRef]
  26. M. Lewenstein, “Fluctuations in the nonlinear regime of stimulated Raman scattering,” Z. Phys. B 56, 69–75 (1984). [CrossRef]
  27. I. A. Walmsley, M. G. Raymer, T. Sizer II, I. N. Duling III, and J. D. Kafka, “Stabilization of Stokes pulse energies in the nonlinear regime of stimulated Raman scattering,” Opt. Commun. 53, 137–140 (1985). [CrossRef]
  28. J. Chang, D. Baiocchi, J. Vas, and J. R. Thompson, “First stokes pulse energy statistics for cascade Raman generation in optical fiber,” Opt. Commun. 139, 227–231 (1997). [CrossRef]
  29. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited