OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 11 — Nov. 1, 2002
  • pp: 2758–2769

Synthesis of temporal optical waveforms by fiber Bragg gratings: a new approach based on space-to-frequency-to-time mapping

José Azaña and Lawrence R. Chen  »View Author Affiliations

JOSA B, Vol. 19, Issue 11, pp. 2758-2769 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and analyze a new technique for optical pulse shaping that uses fiber Bragg gratings, which overcomes the depletion effects associated with long uniform gratings operating in the weak-grating limit (Born approximation). Our approach requires a simple linear reflection of the original input pulse to be shaped from a suitable apodized linearly chirped fiber Bragg grating and is based on the fact that, under certain conditions, the spectral and temporal reflection impulse responses of the grating are scaled versions of its corresponding apodization profile. Temporal waveforms in the picosecond/nanosecond regime can be accurately synthesized with this approach.

© 2002 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(070.2590) Fourier optics and signal processing : ABCD transforms
(070.6020) Fourier optics and signal processing : Continuous optical signal processing

José Azaña and Lawrence R. Chen, "Synthesis of temporal optical waveforms by fiber Bragg gratings: a new approach based on space-to-frequency-to-time mapping," J. Opt. Soc. Am. B 19, 2758-2769 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988). [CrossRef]
  2. T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997). [CrossRef]
  3. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000). [CrossRef]
  4. K. I. Kitayama, S. Osawa, N. Wada, and W. Chujo, “Optical pulse train synthesis of arbitrary waveform using weight/phase-programmable 32-tapped delay line waveguide filter,” in Optical Fiber Communication Conference, Vol. 3 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. WY3/1–WY3/3.
  5. Ph. Emplit, M. Haeltermann, R. Kashyap, and M. De Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9, 1122–1124 (1997). [CrossRef]
  6. S. Longhi, M. Marano, P. Laporta, and V. Pruneri, “Multiplication and reshaping of high-repetition-rate optical pulse trains using highly dispersive fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1498–1500 (2000). [CrossRef]
  7. M. Marano, S. Longhi, P. Laporta, M. Belmonte, and B. Agogliati, “All-optical square-pulse generation and multiplication at 1.5 μm by use of a novel class of fiber Bragg gratings,” Opt. Lett. 26, 1615–1617 (2001). [CrossRef]
  8. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19, 746–752 (2001). [CrossRef]
  9. G. Curatu, S. LaRochelle, C. Pare, and P.-A. Belanger, “Antisymmetric pulse generation using phase-shifted fibre Bragg grating,” Electron Lett. 38, 307–309 (2002). [CrossRef]
  10. J. Desbois, F. Gires, and P. Tournois, “A new approach to picosecond laser pulse analysis, shaping and coding,” IEEE J. Quantum Electron. QE-9, 213–218 (1973). [CrossRef]
  11. J. Agostinelli, G. Harvey, T. Stone, and C. Gabel, “Optical pulse shaping with a grating pair,” Appl. Opt. 18, 2500–2504 (1979). [CrossRef] [PubMed]
  12. X. Ribeyre, C. Rouyer, F. Raoult, D. Husson, C. Sauteret, and A. Migus, “All-optical programmable shaping of narrow-band nanosecond pulses with picosecond accuracy by use of adapted chirps and quadratic nonlinearities,” Opt. Lett. 26, 1173–1175 (2001). [CrossRef]
  13. R. Kashyap, Fiber Bragg Gratings (Academic, London, 1999).
  14. R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of non uniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999). [CrossRef]
  15. L. Poladian, “Simple grating synthesis algorithm,” Opt. Lett. 25, 787–789 (2000). [CrossRef]
  16. J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36, 517–527 (2000). [CrossRef]
  17. J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fiber Bragg gratings,” Electron. Lett. 35, 2223–2224 (1999). [CrossRef]
  18. P. C. Chou, H. A. Haus, and J. F. Brennan III, “Reconfigurable time-domain spectral shaping of an optical pulse stretched by a fiber Bragg grating,” Opt. Lett. 25, 524–526 (2000). [CrossRef]
  19. H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976). [CrossRef]
  20. L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997). [CrossRef]
  21. L. R. Chen, J. E. Sipe, S. D. Benjamin, H. Jung, and P. W. E. Smith, “Dynamics of ultrashort pulse propagation in fiber gratings,” Opt. Express 1, 242–249 (1997). [CrossRef] [PubMed]
  22. J. H. Lee, P. C. The, P. Petropoulos, M. Ibsen, and D. J. Richardson, “All-optical modulation and demultiplexing systems with significant timing jitter tolerance through incorporation of pulse-shaping fiber gratings,” IEEE Photon. Technol. Lett. 14, 203–205 (2002). [CrossRef]
  23. R. Kashyap, “Design of step-chirped fibre Bragg gratings,” Opt. Commun. 136, 461–469 (1997). [CrossRef]
  24. F. Oullette, J.-F. Cliché, and S. Gagnon, “All-fiber devices for chromatic dispersion compensation on chirped distributed resonant coupling,” J. Lightwave Technol. 12, 1728–1738 (1994). [CrossRef]
  25. L. R. Chen, P. W. E. Smith, and C. Martijn de Sterke, “Wavelength-encoding/time-spreading optical code division multiple access system with in-fiber chirped Moiré gratings,” Appl. Opt. 38, 4500–4508 (1999). [CrossRef]
  26. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994). [CrossRef]
  27. B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Apodised infibre Bragg grating reflectors photoimprimed using a phase-mask,” Electron. Lett. 31, 223–225 (1995). [CrossRef]
  28. M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with a uniform phase mask,” Electron. Lett. 31, 92–94 (1995). [CrossRef]
  29. K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998). [CrossRef]
  30. K. Ennser, R. I. Laming, M. N. Zervas, M. Ibsen, and M. Durkin, “Effects of nonideal group delay and reflection characteristics of fiber grating dispersion compensators,” in 23rd European Conference on Optical Communications, IEE Conf. Publ. (London) 448(2), 45–48 (1997).
  31. L. Cohen, “Time-frequency distributions—A review,” IEEE Trans. Acoust., Speech, Signal Process. 77, 941 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited