OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 11 — Nov. 1, 2002
  • pp: 2791–2794

Terahertz pulse shaping and optimal waveform generation in poled ferroelectric crystals

Yun-Shik Lee and Theodore B. Norris  »View Author Affiliations


JOSA B, Vol. 19, Issue 11, pp. 2791-2794 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002791


View Full Text Article

Acrobat PDF (131 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a terahertz pulse-shaping technique that can be accomplished by optical rectification in poled ferroelectric crystals. Simulation results show that arbitrary terahertz waveforms can be synthesized by the engineering of the domain structure of the poled crystals. The ratio of the domain length to the optical pulse length in the crystal turns out to be the crucial limiting factor to generating optimum terahertz fields and preventing waveform distortion.

© 2002 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

Citation
Yun-Shik Lee and Theodore B. Norris, "Terahertz pulse shaping and optimal waveform generation in poled ferroelectric crystals," J. Opt. Soc. Am. B 19, 2791-2794 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-11-2791


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
  2. K. P. Cheung and D. H. Auston, “Excitation of coherent phonon polaritons with femtosecond optical pulses,” Phys. Rev. Lett. 55, 2152–2155 (1985).
  3. L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784–1786 (1992).
  4. A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
  5. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
  6. E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340–343 (2001).
  7. C. Rønne, P. Åstrand, and S. R. Keiding, “THz spectroscopy of liquid H2O and D2O,” Phys. Rev. Lett. 82, 2888–2891 (1999).
  8. T. I. Jeon, D. Grischkowsky, A. K. Mukherjee, and R. Menon, “Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy,” Appl. Phys. Lett. 77, 2452–2454 (2000).
  9. C. Zhang, K.-S. Lee, X.-C. Zhang, X. Wei, and Y. R. Shen, “Optical constants of ice Ih crystal at terahertz frequencies,” Appl. Phys. Lett. 79, 491–493 (2001).
  10. M. Brucherseifer, M. Nagel, P. H. Bolivar, and H. Kurz, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
  11. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
  12. A. M. Weiner, J. P. Heritage, and J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302 (1988).
  13. W. E. White, F. G. Patterson, R. L. Combs, D. F. Price, and R. L. Shepherd, “Compensation of higher-order frequency-dependent phase terms in chirped-pulse amplification systems,” Opt. Lett. 18, 1343–1345 (1993).
  14. Y.-S. Lee, T. B. Norris, A. Maslov, D. S. Citrin, J. Prineas, G. Khitrova, and H. M. Gibbs, “Large-signal coherent control of normal modes in quantum-well semiconductor microcavity,” Appl. Phys. Lett. 78, 3941–3943 (2001).
  15. B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvall, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
  16. S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412 (1992).
  17. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrowband terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505–2507 (2000).
  18. Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000).
  19. Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78, 3583–3585 (2001).
  20. Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz waveform analysis,” Appl. Phys. Lett. 77, 2488–2490 (2000).
  21. F. Armani-Leplingard, J. J. Kingston, and D. K. Fork, “Second harmonic generation in LiTaO3 thin films by modal dispersion and quasi phase matching,” Appl. Phys. Lett. 68, 3695–3697 (1996).
  22. J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
  23. A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAsAlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
  24. K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25, 1714–1716 (2000).
  25. P. Y. Han, M. Tani, F. Pan, and X.-C. Zhang, “Use of the organic crystal DAST for terahertz beam applications,” Opt. Lett. 25, 675–677 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited