OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 11 — Nov. 1, 2002
  • pp: 2803–2809

Wavelength-band generation and transmission of 3.24-Tbit/s (81-channel WDM×40-Gbit/s) carrier-suppressed return-to-zero format by use of a single supercontinuum source for frequency standardization

Hideyuki Sotobayashi, Wataru Chujo, Akio Konishi, and Takeshi Ozeki  »View Author Affiliations


JOSA B, Vol. 19, Issue 11, pp. 2803-2809 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002803


View Full Text Article

Acrobat PDF (1031 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A wavelength band of 40-Gbit/s–based 81-channel dense-wavelength–division multiplexing of a carrier-suppressed (CS) return-to-zero (RZ), i.e., CS-RZ format is simultaneously generated by use of a single supercontinuum (SC) source pumped by an optically multiplexed 40-Gbit/s CS-RZ signal. Because the SC is generated while coherent characteristics are maintained, CS multiplexing in each wavelength-division multiplexing (WDM) channel is multiplied. Furthermore, because a single mode-locked laser-diode (MLLD) pulse is an originated signal source, the WDM channel spacing is strongly locked by the microwave mode-locking frequency. As a result, the proposed technique would be favorably applicable to cost-effective multichannel frequency standardization when the center wavelength of the MLLD is locked to an ITU grid. Transmission of 3.24-Tbit/s (81-channel×40-Gbit/s) DWDM in the CS-RZ format with a 66-nm continuous signal band in the C and the L wavelengths is experimentally demonstrated by use of tellurite-based erubium-doped fiber amplifiers.

© 2002 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing

Citation
Hideyuki Sotobayashi, Wataru Chujo, Akio Konishi, and Takeshi Ozeki, "Wavelength-band generation and transmission of 3.24-Tbit/s (81-channel WDM×40-Gbit/s) carrier-suppressed return-to-zero format by use of a single supercontinuum source for frequency standardization," J. Opt. Soc. Am. B 19, 2803-2809 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-11-2803


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. Harada, K. Shimizu, T. Kudou, and T. Ozeki, “Hierarchical optical path cross-connect systems for large scale WDM networks,” in Optical Fiber Communication Conference (OFC) 1999 Digest (Optical Society of America, Washington, D.C., 1999), paper WM55, pp. 356–358.
  2. Y. Miyamoto, A. Hirano, A. Sano, H. Toba, K. Murata, and O. Mitomi, “320 bit/s (8×40 Gbit/s) WDM transmission over 376-km zero-dispersion-flattened line with 120-km repeater spacing using carrier-suppressed return-to-zero pulse format,” in Optical Amplifiers and their Applications, S. Kinoshita, J. C. Livas, and G. van den Hoven, eds., Vol. 30 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), paper ODP4, pp. PdP4–1–PdP4–4.
  3. Y. Kobayashi, K. Kinjo, K. Ishida, T. Sugihara, S. Kajiya, N. Suzuki, and K. Shimizu, “A comparison among pure-RZ, CS-RZ and SSB-RZ formats in 1 Tbit/s (50×20 Gbit/s, 0.4 nm spacing) WDM transmission over 4, 000 km,” presented at the Twenty-sixth European Conference on Optical Communication (ECOC 2000), Munich, Germany, September 3–7 (2000), paper PDP 1.7.
  4. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
  5. R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, Berlin, 1989).
  6. Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing supercontinuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322–324 (1999).
  7. H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998).
  8. H. Sotobayashi and K. Kitayama, “Broadcast-and-select OCDM/WDM network by using 10-Gbit/s spectrum-sliced supercontinuum BPSK pulse code sequences,” Electron. Lett. 35, 1966–1967 (1999).
  9. H. Sotobayashi and K. Kitayama, “Observation of phase conservation in multiwavelength BPSK pulse-sequence generation at 10 Gbits/s by use of a spectrum-sliced supercontinuum in an optical fiber,” Opt. Lett. 24, 1820–1822 (1999).
  10. J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801–1–270801–4 (2001).
  11. M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
  12. T. Ito, K. Fukuchi, Y. Inada, T. Tsuzaki, M. Harumoto, M. Kakui, and K. Fujii, “3.2-Tb/s–1500-km WDM transmission experiment using 64-nm hybrid repeater amplifiers,” in Optical Fiber Communication Conference (OFC) 2000, Vol. 37 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper PD21, Vol. 4, pp. 239–241.
  13. S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated Symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425–427 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited