OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 11 — Nov. 1, 2002
  • pp: 2810–2816

Photonic gateway: TDM-to-WDM-to-TDM conversion and reconversion at 40 Gbit/s (4 channels × 10 Gbits/s)

Hideyuki Sotobayashi, Wataru Chujo, and Ken-ichi Kitayama  »View Author Affiliations


JOSA B, Vol. 19, Issue 11, pp. 2810-2816 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002810


View Full Text Article

Acrobat PDF (1279 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A photonic gateway that performs conversion and reconversion of 40-Gbit/s (4-channel×10-Gbit/s) TDM-to-WDM-to-TDM by use of only data-signal-induced supercontinuum light sources is experimentally demonstrated. The proposed scheme is based on ultrafast photonic processing in both the time domain and the frequency domain, namely, optical time gating along with time shifting in the time domain, and supercontinuum generation followed by spectrum slicing in the frequency domain. A strict transparency to the bit rate and potential in ultrahigh-speed TDM-to-DWDM distinguish this conversion scheme.

© 2002 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW

Citation
Hideyuki Sotobayashi, Wataru Chujo, and Ken-ichi Kitayama, "Photonic gateway: TDM-to-WDM-to-TDM conversion and reconversion at 40 Gbit/s (4 channels × 10 Gbits/s)," J. Opt. Soc. Am. B 19, 2810-2816 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-11-2810


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. Kitayama, N. Wada, and H. Sotobayashi, “Architectural considerations for photonic IP router based upon optical code correlation,” J. Lightwave Technol. 18, 1834–1844 (2000).
  2. H. Sotobayashi, K. Kitayama, and W. Chujo, “40 Gbit/s pho-tonic packet compression and decompression by supercontinuum generation,” IEEE Electron Device Lett. 37, 110–111 (2001).
  3. D. Norte and A. E. Willner, “Demonstration of all-optical data format transparent WDM-to-TDM network node with extinction ratio enhancement for reconfigurable WDM networks,” IEEE Photon. Technol. Lett. 14, 1170–1182 (1996).
  4. S. Fischer, M. Duelk, M. Puleo, R. Girardi, E. Gamper, W. Vogt, W. Hunziker, E. Gini, and H. Melchior, “40-Gb/s OTDM to 4×10 Gb/s WDM conversion in monolithic InP Mach–Zehnder interferometer module,” IEEE Photon. Technol. Lett. 11, 1262–1264 (1999).
  5. K. Uchiyama, H. Takara, T. Morioka, S. Kawanishi, and M. Saruwatari, “100 Gbit/s multiple-channel output all-optical demultiplexing based on TDM–WDM conversion in a nonlinear optical loop mirror,” IEEE Electron Device Lett. 32, 1989–1991 (1996).
  6. M. R. H. Daza, H. F. Liu, M. Tsuchiya, Y. Ogawa, and T. Kamiya, “All-optical WDM-to-TDM conversion with total capacity of 33 Gb/s for WDM network links,” IEEE J. Sel. Top. Quantum Electron. 3, 1287–1294 (1997).
  7. T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” IEEE Electron Device Lett. 30, 1959–1960 (1994).
  8. H. Sotobayashi, W. Chujo, and T. Ozeki, “80 Gbit/s simultaneous photonic demultiplexing based on OTDM-to-WDM conversion by four-wave mixing with a supercontinuum light source,” IEEE Electron Device Lett. 37, 640–642 (2001).
  9. M. A. Summerfield, J. P. R. Lacey, A. J. Lowery, and R. S. Tucker, “All-optical TDM to WDM conversion in a semiconductor optical amplifier,” IEEE Electron Device Lett. 30, 255–256 (1994).
  10. T. Hashimoto, H. Sotobayashi, K. Kitayama, and W. Chujo, “Photonic conversion of OC-192 OTDM to-4xOC-48 WDM by supercontinuum generation,” IEEE Electron Device Lett. 36, 1133–1135 (2000).
  11. D. Norte and A. E. Willner, “All-optical data format conversions and reconversions between the wavelength and time domains for dynamically reconfigurable WDM networks,” J. Lightwave Technol. 14, 1170–1182 (1996).
  12. T. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, “Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers,” IEEE Photon. Technol. Lett. 6, 365–367 (1994).
  13. K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” IEEE Electron Device Lett. 33, 1806–1808 (1997).
  14. R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, Berlin, 1989).
  15. M. Nakazawa, H. Kubota, K. Tamura, “Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise,” Opt. Lett. 24, 318–320 (1999).
  16. H. Sotobayashi and K. Kitayama, “325-nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” IEEE Electron Device Lett. 34, 1336–1337 (1998).
  17. Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide supercontinuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,” IEEE Photon. Technol. Lett. 10, 1560–1562 (1998).
  18. Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwave-length pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11, 322–324 (1999).
  19. F. Futami and K. Kikuchi, “Low-noise multiwavelength transmitter using spectrum-sliced supercontinuum generated from a normal group-velocity dispersion fiber,” IEEE Photon. Technol. Lett. 13, 73–75 (2001).
  20. S. Taccheo, “Amplitude noise and timing jitter of pulses generated by supercontinuum spectrum-slicing for data-regeneration and TDM/WDM applications,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 2001), Vol. 3, pp. WP2–1–WP2–3.
  21. L. Boivin, S. Taccheo, C. R. Doerr, P. Schiffer, L. W. Stulz, R. Monnard, and W. Lin, “400 Gb/s transmission over 544 km from a spectrum-sliced supercontinuum source,” IEEE Electron Device Lett. 36, 335–336 (2000).
  22. H. Sotobayashi, A. Konishi, W. Chujo, and T. Ozeki, “Wavelength-band generation and transmission of 3.24-Tbit/s (81-channel WDM×40 Gbit/s) carrier-suppressed return-to-zero format by use of a single supercontinuum source for frequency standardization,” J. Opt. Soc. Am. B 19, 2803–2809 (2002).
  23. H. Kurita, I. Ogura, and H. Yokoyama, “Ultrafast all-optical signal processing with mode-locked semiconductor lasers,” IEICE Trans. Electron. E81-C, 129–139 (1998).
  24. H. Kurita, Y. Hashimoto, I. Ogura, H. Yamada, and H. Yokoyama, “All-optical 3R regeneration based on optical clock recovery with mode-locked LDs,” in Proceedings of the Twenty-fifth European Conference on Optical Communication (ECOC 1999), Munich, Germany, 4–7 September 2000, pp. 56–57.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited