OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 12 — Dec. 2, 2002
  • pp: 2844–2851

Controllable double-well magnetic traps for neutral atoms

Jianjun Hu and Jianping Yin  »View Author Affiliations


JOSA B, Vol. 19, Issue 12, pp. 2844-2851 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002844


View Full Text Article

Acrobat PDF (217 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose two double-well magnetic traps for cold neutral atoms that use current-carrying wires. These traps can be used to trap two different atomic species. The spatial distributions of the magnetic fields, gradients, and curvatures from these two wire configurations were calculated and analyzed. Our study shows that the double-well traps proposed here can be continuously changed into single-well traps by reduction of the current in a wire (or a coil) and vice versa and that a maximum field gradient greater than 5×104 G/cm and a maximum field curvature (at each trap center) greater than 2.5×107 G/cm2 can be generated in our double-well traps and used to achieve two-species Bose–Einstein condensations and study the properties of double-well Bose–Einstein condensations or to achieve sympathetic cooling between two atomic samples or even to achieve two-species magneto-optical traps and study cold collisions between two atomic samples.

© 2002 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.7010) Atomic and molecular physics : Laser trapping
(020.7490) Atomic and molecular physics : Zeeman effect
(230.3990) Optical devices : Micro-optical devices

Citation
Jianjun Hu and Jianping Yin, "Controllable double-well magnetic traps for neutral atoms," J. Opt. Soc. Am. B 19, 2844-2851 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-12-2844


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T.-L. Ho and V. B. Shenoy, “Binary mixtures of Bose condensates of alkali atoms,” Phys. Rev. Lett. 77, 3276–3279 (1996).
  2. Th. Busch, J. I. Cirac, V. M. Perez-Garcia, and P. Zoller, “Stability and collective excitations of a two-component Bose–Einstein condensed gas: a moment approach,” Phys. Rev. Lett. 78, 2978–2981 (1997).
  3. C. K. Law, H. Pu, N. P. Bigelow, and J. H. Eberly, “Stability signature in two-species dilute Bose–Einstein condensates,” Phys. Rev. Lett. 79, 3105–3108 (1997).
  4. H. Pu and N. N. P. Bigelow, “Properties of two-species Bose condensates,” Phys. Rev. Lett. 80, 1130–1133 (1998).
  5. H. Pu and N. N. P. Bigelow, “Collective excitations, metastability, and nonlinear response of a trapped two-species Bose–Einstein condensate,” Phys. Rev. Lett. 80, 1134–1137 (1998).
  6. D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, “Dynamics of component separation in a binary mixture of Bose–Einstein condensates,” Phys. Rev. Lett. 81, 1539–1542 (1998).
  7. A. Sinatra, P. O. Fedichev, Y. Castin, J. Dalibard, and G. V. Shuyapnikov, “Dynamics of two interacting Bose–Einstein condensates,” Phys. Rev. Lett. 82, 251–254 (1999).
  8. M. Modugno, F. Dalfovo, C. Fort, P. Maddaloni, and F. Minardi, “Dynamics of two colliding Bose–Einstein condensates in an elongated magnetostatic trap,” Phys. Rev. A 62, 063607–1-8 (2000).
  9. P. Öhberg, L. Santos, D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, “Dark solitons in a two-component Bose–Einstein condensate,” Phys. Rev. Lett. 86, 2918–2921 (2001).
  10. D. S. Hall, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Measurements of relative phase in two-component Bose–Einstein condensates,” Phys. Rev. Lett. 81, 1543–1546 (1998).
  11. J. Williams, R. Walser, J. Cooper, E. A. Cornell, M. Holland, D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, “Excitation of a dipole topological state in strongly coupled two-component Bose–Einstein condensates,” Phys. Rev. A 61, 033612–1-9 (1998).
  12. J. P. Burke, Jr., J. L. Bohn, B. D. Esry, and C. H. Greene, “Prospects for mixed-isotope Bose–Einstein condensates in rubidium,” Phys. Rev. Lett. 80, 2097–2100 (1998).
  13. C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, “Production of two overlapping Bose–Einstein condensates by sympathetic cooling,” Phys. Rev. Lett. 78, 586–589 (1997).
  14. G. Delannoy, S. G. Murdoch, V. Boyer, V. Josse, P. Bouyer, and A. Aspect, “Understanding the production of dualBose–Einstein condensation with sympathetic cooling,” Phys. Rev. A 63, 051602–1-4 (2001).
  15. M. W. Jack, M. J. Collett, and D. F. Walls, “Coherent quantum tunneling between two Bose–Einstein condensates,” Phys. Rev. A 54, R4625–R4628 (1996).
  16. G. J. Miburn, J. Corney, E. M. Wright, and D. F. Walls, “Quantum dynamics of an atomic Bose–Einstein condensate in a double-well potential,” Phys. Rev. A 55, 4318–4320 (1997).
  17. H.-J. Wang, X.-X. Yi, and X.-W. Ba, “Dynamics of an atomic Bose–Einstein condensation interacting with a laser field in a double-well potential,” Phys. Rev. A 62, 023601–1-7 (2000).
  18. H. Wallis, A. Röhrl, M. Narachewski, and A. Schenzle, “Phase-space dynamics of Bose condensates: Interference versus interaction,” Phys. Rev. A 55, 2109–2119 (1997).
  19. J. E. Williams, “Optimal conditions for observing Josephson oscillations in a double-well Bose–Einstein condensate,” Phys. Rev. A 64, 013610–1-7 (2001).
  20. M. Holthaus, “Towards coherent control of a Bose–Einstein condensate in a double well,” Phys. Rev. A 64, 011601 (2001).
  21. J. Reichel, W. Hansel, P. Hommelhoff, and T. W. Hänsch, “Applications of integrated magnetic microtraps,” Appl. Phys. B 73, 81–89 (2001).
  22. M. S. Santos, P. Nussenzveig, L. G. Marcassa, K. Helmerson, J. Flemming, S. C. Zilio, and V. S. Bagnato, “Simultaneous trapping of two different atomic species in a vapor-cell magneto-optical trap,” Phys. Rev. A 52, R4340–R4343 (1995).
  23. G. D. Tells, L. G. Marcassa, S. R. Muniz, S. G. Miranda, and A. Antunes, “Inelastic cold collisions of a Na/Rb mixture in a magneto-optical trap,” Phys. Rev. A 59, R23–R26 (1999).
  24. M. S. Santos, P. Nussenzveig, A. Antunes, P. S. P. Cardoma, and V. S. Bagnato, “Hyperfine-changing collision measurements in trap loss for mixed species in a magnetio-optical trap,” Phys. Rev. A 60, 3892–3895 (1999).
  25. J. P. Shaffer, W. Chalupczak, and N. P. Bigelow, “Trap loss in a two-species Na–Cs magneto-optical trap: intramultiplet mixing in heteronuclear ultracold collisions,” Phys. Rev. A 60, R3365–R3368 (1999).
  26. L. G. Marcassa, G. D. Telles, S. R. Muniz, and V. S. Bagnato, “Collisional losses in a K–Rb cold mixture,” Phys. Rev. A 63, 013413–1-6 (2000).
  27. J. P. Shaffer, W. Chalupczak, and N. P. Biglow, “Photoassociative ionization of heteronuclear molecules in a novel two-species magneto-optical trap,” Phys. Rev. Lett. 82, 1124–1127 (1999).
  28. A. Mosk, S. Karft, M. Mudrich, W. Wohlleben, R. Grimm, and M. Weidemuller, “Mixture of ultracold lithium and cesium atoms in an optical dipole trap,” Appl. Phys. B 73, 791–799 (2001).
  29. U. Schloder, H. Engler, U. Schunemann, R. Grimm, and M. Weidemuller, “Cold inelastic collisions between lithium and cesium,” Eur. Phys. J. D7, 331–340 (2000).
  30. Y. E. Young, R. Ejnisman, J. P. Shaffer, and N. P. Bigelow, “Heteronuclear hyperfine-state-changing cold collisions,” Phys. Rev. A 62, 055403–1-4 (2000).
  31. T. Bergeman, G. Erez, and H. J. Metsalf, “Magnetostatic trapping fields for neutral atoms,” Phys. Rev. A 35, 1535–1546 (1987).
  32. J. Reichel, W. Hansel, and T. W. Hänsch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett. 83, 3398–3401 (1999).
  33. D. Cassettari, A. Chenet, R. Folman, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, “Micromanipulation of neutral atoms with nanofabricated structures,” Appl. Phys. B 70, 721–730 (2000).
  34. W. Hansel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
  35. Available from the Internet: fttp://http://amop.phys, gasou.edu/bec.html/popular.
  36. O. Carnal, A. Faulstich, and J. Mlynek, “Diffraction of metastable helium atoms by a transmission grating,” Appl. Phys. B 53, 88–91 (1991).
  37. R. E. Grisenti, W. Schollkopf, J. P. Toennies, J. R. Manson, T. A. Savas, and H. I. Smith, “He-atom diffraction from nanostructure transmission grating: the role of imperfections,” Phys. Rev. A 61, 033608–1-15 (2000).
  38. M. Drndic, K. S. Johnson, J. H. Thywissen, M. Prentiss, and R. M. Weetervelt, “Micro-electromagnets for atom manipulation,” Appl. Phys. Lett. 72, 2906–2908 (1998).
  39. J. H. Thywissen, M. Olshanii, G. Zabow, M. Drndic, K. S. Johnson, R. M. Westervelt, and M. Prentiss, “Microfabricated magnetic waveguides for neutral atoms,” Eur. Phys. J. D7, 361–367 (1999).
  40. P. A. Willems and K. G. Libbrecht, “Creating long-lived neutral-atom traps in a cryogenic environment,” Phys. Rev. A 51, 1403–1406 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited