OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 12 — Dec. 2, 2002
  • pp: 2957–2966

Self- and cross-modulation effects in a synchronously pumped optical parametric oscillator

E. Gaižauskas, R. Grigonis, and V. Sirutkaitis  »View Author Affiliations


JOSA B, Vol. 19, Issue 12, pp. 2957-2966 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002957


View Full Text Article

Acrobat PDF (274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Self- and cross-phase modulation in a synchronously pumped optical parametric oscillator (SPOPO) was investigated both theoretically and experimentally. Cubic nonlinearity, group-velocity walk-off, group-velocity dispersion, quadratic broadening, and parametric interaction with depletion and backconversion were included in the theoretical investigation. It was found that asymmetry of the spectrally broadened SPOPO pulses is caused by cross-phase modulation introduced by the pump pulses. Experimental studies of the effects of pumping intensity and cavity detuning on spectral broadening and pulse compression were performed. Excellent agreement between numerical and experimental results was found in the giant-pulse-compression mode of operation. A train of 1.7-ps pulses at 527 nm synchronously pumped the SPOPO based on KDP with type II phase matching.

© 2002 Optical Society of America

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

Citation
E. Gaižauskas, R. Grigonis, and V. Sirutkaitis, "Self- and cross-modulation effects in a synchronously pumped optical parametric oscillator," J. Opt. Soc. Am. B 19, 2957-2966 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-12-2957


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. L. Byer and A. Piskarskas, eds, feature on optical parametric oscillation and amplification, J. Opt. Soc. Am. B 10, 1655–2243 (1993).
  2. A. Laubereau, “Optical nonlinearities with ultrashort pulses,” in Ultrashort Laser Pulses and Applications, W. Kaiser, ed., Vol. 60 of Topics in Applied Physics (Springer-Verlag, New York, 1989), pp. 35–112.
  3. M. Ebrahimzadeh, “Pulsed parametric oscillators,” in Laser Sources and Applications, A. Miller and D. M. Finlayson, eds. (NATO Advanced Study Institute, location, 1996), pp. 228–254.
  4. R. Danielius, G. Dikchyus, V. Kabelka, A. Piskarskas, A. Stabinis, and J. Jaseviciute, “Parametric excitation of light in the picosecond range,” Sov. J. Quantum Electron. 7, 1360–1368 (1977).
  5. W. Kaiser, and A. Seilmeier, “Generation of tunable picosecond light pulses covering the frequency range between 2700 and 32, 000 cm−1,” Appl. Phys. 23, 112–119 (1980).
  6. R. Danielius, A. Piskarskas, V. Sirutkaitis, A. Stabinis, and J. Jaseviciute, Optical Parametric Oscillators and Picosecond Spectroscopy (Mokslas, Vilnius, Lithuania, 1983).
  7. R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, and R. Righini, “Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses,” J. Opt. Soc. Am. B 10, 2222–2223 (1993).
  8. R. E. Weisman and S. A. Rice, “Tunable infrared ultrashort pulses from a mode-locked parametric oscillator,” Opt. Commun. 19, 28–32 (1976).
  9. B. Bareika, G. Dikchyus, A. Piskarskas, and V. Sirutkaitis, “Parametric generation of picosecond radiation with high spectral q factor and diffraction-limit divergence in a resonator by mode-locked pumping,” Sov. J. Quantum Electron. 10, 1277–1279 (1980).
  10. A. Piskarskas, V. Smilgevičius, and A. Umbrasas, “Continuous parametric generation of picosecond light pulses,” Sov. J. Quantum Electron. 18, 155–156 (1988).
  11. D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728–1730 (1989).
  12. E. S. Wachman, D. C. Edelstein, and C. L. Tang, “Continuous-wave mode-locked and dispersion compensated femtosecond optical parametric oscillator,” Opt. Lett. 15, 136–138 (1990).
  13. A. Piskarskas, V. Smilgevičius, and A. Umbrasas, “The parametric generation of bandwidth limited picosecond light pulses,” Opt. Commun. 73, 322–324 (1989).
  14. K. Wolfrum, R. Leanen, and A. Laubereau, “Intense bandwidth- and diffraction-limited picosecond pulses with large tuning range,” Opt. Commun. 97, 41–46 (1993).
  15. M. J. McCarthy and D. C. Hanna, “All-solid-state synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 10, 2180–2190 (1993).
  16. G. J. Hall, M. Ebrahimzadeh, A. Robertson, G. R. A. Malcon, and A. J. Ferguson, “Synchronously pumped optical parametric oscillators using all-solid-state pump lasers,” J. Opt. Soc. Am. B 10, 2168–2179 (1993).
  17. Y. R. Shen, The Nonlinear Optics (Springer-Verlag, Berlin, 1989).
  18. Q. Fu, G. Mak, and H. M. Driel, “High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser,” Opt. Lett. 17, 1006–1008 (1992).
  19. W. S. Pelouch, P. E. Powers, and C. L. Tang, “Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator,” Opt. Lett. 17, 1070–1072 (1992).
  20. A. Hache, G. R. Allan, and M. van Driel, “Effects of cavity detuning on the pulse characteristics of a femtosecond synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2209–2213 (1995).
  21. L. P. Chen, Y. Wang, and J. M. Liu, “Singly resonant op-tical parametric oscillator sinchronously pumped by frequency-doubled additive-pulse mode-locked Nd:YLF laser pulses,” J. Opt. Soc. Am. B 12, 2192–2198 (1995).
  22. K. Gardziulis, R. Grigonis, J. Jaseviciute, G. Sinkevicius, and V. Sirutkaitis, “Picosecond OPO with nonresonant pump reflection,” Lith. Phys. J. 33, 296–300 (1993).
  23. S. A. Akhmanov, K. N. Drabovich, A. I. Kovrygin, A. P. Suchorukov, and A. S. Chirkin, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
  24. B. Bareika, G. Dikchyus, A. Piskarskas, V. Sirutkaitis, and Ya. Yasevichyute, “Generation of subpicosecond continuously frequency-tunable infrared pulses,” Sov. J. Quantum Electron. 13, 1507–1510 (1983).
  25. E. Gaižauskas, A. Piskarskas, and K. Staliuŭnas, “Possible generation of of femtosecond pulses in mode-locked optical parametric oscillators,” Sov. Phys. Collect. 28, 75–79 (1988).
  26. A. Umbrasas, J.-C. Diels, J. Jacob, and A. Piskarskas, “Parametric oscillation and compression in KTP crystals,” Opt. Lett. 21, 1753–1755 (1994).
  27. J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, “20-fold pulse compression in a synchronously pumped optical parametric oscillator,” Appl. Phys. Lett. 26, 1614–1616 (1994).
  28. J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, “Pulse compression in a synchronously pumped optical parametric oscillator from group-velocity mismatch,” Opt. Lett. 19, 831–833 (1994).
  29. J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, “Pulse compression mechanism in a synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2199–2208 (1995).
  30. E. Ibragimov, A. A. Struthers, D. J. Kaup, J. D. Khaydarov, and K. D. Singer, “Three-wave interaction solitons in optical parametric amplification,” Phys. Rev. E 59, 6122–6137 (1999).
  31. E. Gaižauskas and K. Staliuŭnas, “On the optimal conditions for the selforganization in three wave nonlinear coupling,” Opt. Commun. 114, 463–469 (1995).
  32. M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, “Analytic expressions for ultrashort pulse generation in mode-locked optical parametric oscillators,” J. Appl. Phys. 45, 3996–4005 (1974).
  33. E. C. Cheung and J. M. Liu, “Theory of a synchronously pumped optical parametric oscillator in steady-state operation,” J. Opt. Soc. Am. B 7, 1385–1401 (1990).
  34. W. L. Smith, J. H. Bechtel, and N. Blombergen, “Dielectric-breakdown threshold and nonlinear-refractive-index measurements with picosecond laser pulses,” Phys. Rev. B 12, 7006–7014 (1975).
  35. K. Burneika, R. Grigonis, A. Piskarskas, G. Sinkyavichyus, and V. Sirutkaitis, “Highly stable subpicosecond neodymium (Nd3+) glass laser with passive mode locking and negative feedback,” Sov. J. Quantum Electron. 18, 1034–1035 (1988).
  36. R. N. Gyuzalian, S. B. Sogomopnian, and Z. G. Horvath, “Background-free measurement of time behaviour of an individual picosecond laser pulses,” Opt. Commun. 29, 239–242 (1979).
  37. W. E. Torruellas, Z. Wang, D. J. Hagen, E. W. Van Stryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).
  38. G. I. Stegeman, D. N. Christodoulides, and M. Segev, “Optical spatial solitons: historical perspectives,” IEEE J. Sel. Top. Quantum Electron. 6, 1419–1427 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited