OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 2 — Feb. 1, 2002
  • pp: 208–214

Picosecond and nanosecond polychromatic pump–probe studies of bubble growth in carbon-nanotube suspensions

Laurent Vivien, Didier Riehl, Jean-François Delouis, Jacques A. Delaire, François Hache, and Eric Anglaret  »View Author Affiliations


JOSA B, Vol. 19, Issue 2, pp. 208-214 (2002)
http://dx.doi.org/10.1364/JOSAB.19.000208


View Full Text Article

Enhanced HTML    Acrobat PDF (216 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical limiting in carbon-nanotube suspensions, whose origin lies in a strong nonlinear scattering due to solvent vapor bubbles and sublimation of the nanotubes, is investigated in the picosecond and nanosecond regimes by polychromatic pump–probe experiments. Samples were pumped either with 532-nm or 1064-nm pulses, and probed from 400 nm to 650 nm. Using a model based on Mie theory, we determine the time evolution of the radius and the concentration of the scattering centers for both temporal regimes. We compare the transmission signals for single-wall carbon nanotubes suspended in water and in chloroform and for multiwall carbon nanotubes in water. Several conclusions can be drawn. First, coalescence of gaseous cavities is more effective in water than in chloroform, leading to nonlinear scattering by a smaller number of larger bubbles. Second, in spite of the smaller size of the scattering centers, the limiting efficiency of chloroform suspensions is better than that of water suspensions, due to a larger volume fraction of the gaseous phase. However, the characteristic times for the growth of laser-induced bubbles are too long to allow efficient limiting of subnanosecond laser pulses.

© 2002 Optical Society of America

OCIS Codes
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4870) Nonlinear optics : Photothermal effects
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles

Citation
Laurent Vivien, Didier Riehl, Jean-François Delouis, Jacques A. Delaire, François Hache, and Eric Anglaret, "Picosecond and nanosecond polychromatic pump–probe studies of bubble growth in carbon-nanotube suspensions," J. Opt. Soc. Am. B 19, 208-214 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-2-208


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Nashimoto, R. Pachter, B. W. Wessels, J. Shmulovich, A. K.-Y. Jen, K. Lewis, R. Sutherland, and J. W. Perry, eds., Thin Films for Optical Waveguides Devices and Materials for Optical Limiting, Vol. 597 of MRS Proceedings Series (Materials Research Society, Warrendale, Pa., 1999).
  2. R. Bozio, F. Kazjar, and M. Meneghetti, eds., Proceeding of Second International Workshop on Optical Power Limiting (Gordon and Breach, London, 2002).
  3. J. W. Perry, “Organics and metal-containing reverse saturable absorbers for optical limiters,” in Nonlinear Optics of Organics Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC Press, Orlando, Fla., 1997), pp. 813–840.
  4. P. Feneyrou, “Broadband optical limiting using tandem filters with multiphoton absorber and reverse saturable absorbers,” J. Opt. Nonlinear Phys. Mat. 9, 523–530 (2000). [CrossRef]
  5. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).
  6. B. L. Justus, A. L. Huston, and A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1486 (1993). [CrossRef]
  7. K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspensions,” Proc. SPIE 3472, 42–52 (1998). [CrossRef]
  8. K. M. Nashold and D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995). [CrossRef]
  9. K. Mansour, M. J. Soileau, and E. W. Van Stryland, “Nonlinear optical properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100–1109 (1992). [CrossRef]
  10. V. Joudrier, P. Bourdon, F. Hache, and C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000). [CrossRef]
  11. S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991). [CrossRef]
  12. L. Vivien, E. Anglaret, D. Riehl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, and F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999), and erratum 312, 617 (1999). [CrossRef]
  13. S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000). [CrossRef]
  14. L. Vivien, E. Anglaret, D. Riehl, F. Hache, F. Bacou, M. Andrieux, F. Lafonta, C. Journet, C. Goze, M. Brunet, and P. Bernier, “Optical limiting properties of singlewall carbon nanotubes,” Opt. Commun. 174, 271–275 (2000). [CrossRef]
  15. X. Sun, Y. Xiong, P. Chen, J. Lin, W. Ji, J. Hong Lim, S. S. Yang, D. J. Hagan, and E. W. Van Stryland, “Investigation of an optical limiting mechanism in multiwalled carbon nanotubes,” Appl. Opt. 39, 1998–2001 (2000). [CrossRef]
  16. L. Vivien, D. Riehl, E. Anglaret, and F. Hache, “Pump-probe experiments at 1064 nm in singlewall carbon nanotube suspensions,” IEEE J. Quantum Electron. 36, 680–686 (2000). [CrossRef]
  17. L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Opt. Nonlinear Phys. Mat. 9, 297–308 (2000). [CrossRef]
  18. L. Vivien, D. Riehl, P. Lançon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001). [CrossRef]
  19. J. E. Riggs, D. B. Walker, D. L. Carroll, and Y.-P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104, 7071–7076 (2000). [CrossRef]
  20. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature 388, 756–758 (1997). [CrossRef]
  21. L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes,” Synth. Metals 103, 2492–2493 (1999). [CrossRef]
  22. S. Rols, E. Anglaret, J. L. Sauvajol, G. Coddens, and A. J. Dianoux, “Neutron scattering studies of the structure and dynamics of nanobundles of single wall carbon nanotubes,” Appl. Phys. A 69, 1–72 (1999). [CrossRef]
  23. S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol, “Diffraction by finite-size crystalline bundles of single wall nanotubes,” Europhys. J. B 10, 263–270 (1999).
  24. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited