OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 2 — Feb. 1, 2002
  • pp: 234–242

Continuous-wave versus pulse regime in a passively mode-locked laser with a fast saturable absorber

J. M. Soto-Crespo, N. Akhmediev, and G. Town  »View Author Affiliations

JOSA B, Vol. 19, Issue 2, pp. 234-242 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (523 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The phenomenon of modulation instability of continuous-wave (cw) solutions of the cubic–quintic complex Ginzburg–Landau equation is studied. It is shown that low-amplitude cw solutions are always unstable. For higher-amplitude cw solutions, there are regions of stability and regions where the cw solutions are modulationally unstable. It is found that there is an indirect relation between the stability of the soliton solutions and the modulation instability of the higher-amplitude cw solutions. However, there is no one-to-one correspondence between the two. We show that the evolution of modulationally unstable cw’s depends on the system parameters.

© 2002 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.5940) Nonlinear optics : Self-action effects
(320.5540) Ultrafast optics : Pulse shaping

J. M. Soto-Crespo, N. Akhmediev, and G. Town, "Continuous-wave versus pulse regime in a passively mode-locked laser with a fast saturable absorber," J. Opt. Soc. Am. B 19, 234-242 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13–15 (1984). [CrossRef] [PubMed]
  2. H. A. Haus and M. N. Islam, “Theory of soliton laser,” IEEE J. Quantum Electron. QE-21, 1172–1177 (1985). [CrossRef]
  3. S. M. J. Kelly, “Mode-locking dynamics of a laser coupled to an empty external cavity,” Opt. Commun. 70, 495 (1989). [CrossRef]
  4. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996). [CrossRef]
  5. H. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975). [CrossRef]
  6. P. A. Belanger, “Coupled-cavity mode locking: a nonlinear model,” J. Opt. Soc. Am. B 8, 2077–2082 (1991). [CrossRef]
  7. A. I. Chernykh and S. K. Turitsyn, “Soliton and collapse regimes of pulse generation in passively mode-locking laser systems,” Opt. Lett. 20, 398–400 (1995). [CrossRef] [PubMed]
  8. F. I. Khatri, J. D. Moores, G. Lenz, and H. A. Haus, “Models for self-limited additive pulse mode-locking,” Opt. Commun. 114, 447–452 (1995). [CrossRef]
  9. C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Stability of passively mode-locked fiber lasers with fast saturable absorption,” Opt. Lett. 19, 198–200 (1995). [CrossRef]
  10. P.-S. Jian, W. E. Torruellas, M. Haelterman, S. Trillo, U. Peschel, and F. Lederer, “Solitons of singly resonant optical parametric oscillators,” Opt. Lett. 24, 400–402 (1999). [CrossRef]
  11. C. S. Ng and A. Bhattacharjee, “Ginzburg–Landau model and single-mode operation of a free-electron laser oscillator,” Phys. Rev. Lett. 82, 2665–2668 (1999). [CrossRef]
  12. C. O. Weiss, “Spatio-temporal structures. Part II. Vortices and defects in lasers,” Phys. Rep. 219, 311–338 (1992). [CrossRef]
  13. A. M. Dunlop, E. M. Wright, and W. J. Firth, “Spatial soliton laser,” Opt. Commun. 147, 393–401 (1998). [CrossRef]
  14. V. B. Taranenko, K. Staliunas, and C. O. Weiss, “Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator,” Phys. Rev. A 56, 1582–1591 (1997). [CrossRef]
  15. W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996). [CrossRef] [PubMed]
  16. N. N. Rozanov, Optical Bistability and Hysteresis in Distributed Nonlinear Systems (Physical and Mathematical Literature, Moscow, 1997).
  17. P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. Indik, “Space–time dynamics of wide-gain-section lasers,” Phys. Rev. A 45, 8129–8147 (1992). [CrossRef] [PubMed]
  18. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1995). [CrossRef]
  19. E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B 58, 159–170 (1994). [CrossRef]
  20. J. D. Moores, “On the Ginzburg–Landau laser mode-locking model with fifth-order saturable absorber term,” Opt. Commun. 96, 65–70 (1993). [CrossRef]
  21. B. C. Collings, K. Bergman, and W. H. Knox, “True fundamental solitons in a passively mode-locked short cavity Cr4+:YAG laser,” Opt. Lett. 22, 1098–1100 (1997). [CrossRef] [PubMed]
  22. F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett. 20, 16–18 (1995). [CrossRef] [PubMed]
  23. M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, “Multipulse operation of a Ti:sapphire laser modelocked by an ion-implanted semiconductor saturable absorber mirror,” J. Opt. Soc. Am. B 16, 895–904 (1999). [CrossRef]
  24. J. Hermann, “Starting dynamic, self-starting condition and mode-locking threshold in passive, coupled-cavity or Kerr-lens mode-locked solid-state lasers,” Opt. Commun. 98, 111–116 (1993). [CrossRef]
  25. H. A. Haus and E. P. Ippen, “Self-starting of passively mode-locked lasers,” Opt. Lett. 16, 235–237 (1991). [CrossRef]
  26. F. Krausz, T. Brabec, and Ch. Spielmann, “Self-starting passive mode-locking,” Opt. Lett. 16, 235–237 (1991). [CrossRef] [PubMed]
  27. C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Self-starting of passively mode-locked lasers with fast saturable absorbers,” Opt. Lett. 20, 350–352 (1995). [CrossRef] [PubMed]
  28. N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman & Hall, London, 1997).
  29. J. M. Soto-Crespo, N. N. Akhmediev, and V. V. Afanasjev, “Stability of the pulselike solutions of the quintic complex Ginzburg–Landau equation,” J. Opt. Soc. Am. B 13, 1439–1449 (1996). [CrossRef]
  30. T. Kapitula and B. Sandstede, “Instability mechanism for bright solitary-wave solutions to the cubic–quintic Ginzburg–Landau equation,” J. Opt. Soc. Am. B 15, 2757–2762 (1998). [CrossRef]
  31. P. Coullet, C. Riera, and C. Tresser, “Stable static localized structures in one dimension,” Phys. Rev. Lett. 84, 3069–3072 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited