OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 2 — Feb. 1, 2002
  • pp: 268–279

Experimental and theoretical investigation of generation of a cross-polarized wave by cascading of two different second-order processes

G. I. Petrov, O. Albert, N. Minkovski, J. Etchepare, and S. M. Saltiel  »View Author Affiliations

JOSA B, Vol. 19, Issue 2, pp. 268-279 (2002)

View Full Text Article

Acrobat PDF (320 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is converted into a wave that is cross polarized to the input wave is investigated theoretically and observed experimentally in β-barium borate crystal. It is proved that this effect is a result of cascading of two different second-order processes. It starts with the generation of an extraordinary second-harmonic wave by type I interaction and is followed by type II difference-frequency mixing between the second-harmonic wave and the ordinary fundamental wave. The experiment was performed (a) for phase-matched type I interaction and non-phase-matched type II interaction and (b) for non-phase-matched type I interaction and phase-matched type II interaction. The observed generation of a cross-polarized wave is to our knowledge the only cubic effect whose first manifestation has been observed in quadratic crystal.

© 2002 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(200.4740) Optics in computing : Optical processing
(230.5440) Optical devices : Polarization-selective devices

G. I. Petrov, O. Albert, N. Minkovski, J. Etchepare, and S. M. Saltiel, "Experimental and theoretical investigation of generation of a cross-polarized wave by cascading of two different second-order processes," J. Opt. Soc. Am. B 19, 268-279 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. Stegeman, D. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode locking, pulse compression, and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
  2. G. Assanto, “Quadratic cascading: effects and applications,” in Beam Shaping and Control with Nonlinear Optics, F. Kajzar and R. Reinisch, eds. (Plenum, New York, 1998), pp. 341–374.
  3. S. Saltiel, I. Buchvarov, and K. Koynov, “Control of laser light parameters by χ(2)(2) cascading,” in Advanced Photonics with Second-Order Nonlinear Processes, A. Boardman, L. Pavlov, and S. Tanev, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1998), pp. 89–112.
  4. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–31 (1992).
  5. A. Dubietis, G. Valiulis, R. Danielius, and A. Piskarkas, “Fundamental-frequency pulse compression through cascaded second-order processes in a type II phase-matched second-harmonic generator,” Opt. Lett. 21, 1262–1264 (1996).
  6. X. Liu, L. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2)(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
  7. A. V. Buryak and Yu. S. Kivshar, “Solitons due to second harmonic generation,” Phys. Lett. A 197, 407–412 (1995).
  8. W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. Van Stryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).
  9. B. Bourliaguet, V. Couderc, A. Barthelemy, G. W. Ross, P. G. R. Smith, D. C. Hanna, and C. De Angelis, “Observation of quadratic spatial solitons in periodically poled lithium niobate,” Opt. Lett. 24, 1410–1412 (1999).
  10. S. A. Akhmanov, L. B. Meisner, S. T. Parinov, S. M. Saltiel, and V. G. Tunkin, “Third order nonlinear optical susceptibilities of crystals; signs and amplitudes of the susceptibilities in crystals with and without inversion center,” Zh. Eksp. Teor. Fiz. 73, 1710–1728 (1977) [ JETP 46, 898–907 (1977)].
  11. P. Qiu and A. Penzkofer, “Picosecond third harmonic light generation in β-BaB2O4,” Appl. Phys. B 45, 225–236 (1988).
  12. I. V. Tomov, B. van Wonterghem, and P. M. Rentzepis, “Third harmonic generation in barium borate,” Appl. Opt. 31, 4172–4174 (1992).
  13. S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, “Quasi-phase matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
  14. Y.-Y. Zhu and N.-B. Ming, “Dielectric superlattices for nonlinear optical effects,” Opt. Quantum Electron. 31, 1093–1128 (1999).
  15. X. Mu, X. Gu, M. V. Makarov, Y. J. Ding, J. Wang, J. Wei, and Y. Liu, “Third-harmonic generation by cascading second-order nonlinear processes in a cerium-doped KTiOPO4 crystal,” Opt. Lett. 25, 117–119 (2000).
  16. P. S. Banks, M. D. Feit, and M. D. Perry, “High-intensity third-harmonic generation in beta barium borate through second-order and third-order susceptibilities,” Opt. Lett. 24, 4–6 (1999).
  17. J. P. Fève, B. Boulanger, and Y. Guillien, “Efficient energy conversion for cubic third-harmonic generation that is phase matched in KTiOPO4,” Opt. Lett. 25, 1373–1375 (2000).
  18. Ch. Bosshard, U. Gubler, P. Kaatz, W. Mazerant, and U. Meier, “Non-phase-matched optical third-harmonic generation in noncentrosymmetric media: cascaded second-order contributions for the calibration of third-order nonlinearities,” Phys. Rev. B 61, 10, 688–10, 701 (2000).
  19. V. V. Konotop and V. Kuzmiak, “Simultaneous second- and third-harmonic generation in one-dimensional photonic crystals,” J. Opt. Soc. Am. 16, 1370–1376 (2000).
  20. Y. Takagi and S. Muraki, “Third-harmonic generation in a noncentrosymmetrical crystal: direct third-order or cascaded second-order process?” J. Lumin. 87–89, 865–867 (2000).
  21. K. Koynov and S. Saltiel, “Nonlinear phase shift via χ(2) multistep cascading,” Opt. Commun. 152, 96–100 (1998).
  22. S. Saltiel, K. Koynov, Y. Deyanova, and Yu. S. Kivshar, “Nonlinear phase shift resulting from two-color multistep cascading,” J. Opt. Soc. Am. B 17, 959–965 (2000).
  23. Yu. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, “Two-color multistep cascading and parametric soliton-induced waveguides,” Phys. Rev. E 60, R5056–R5059 (1999).
  24. Yu. S. Kivshar, T. J. Alexander, and S. Saltiel, “Spatial optical solitons resulting from multistep cascading,” Opt. Lett. 24, 759–761 (1999).
  25. I. Towers, R. Sammut, A. V. Buryak, and B. A. Malomed, “Soliton multistability as a result of double-resonance wave mixing in media,” Opt. Lett. 24, 1738–1740 (1999).
  26. I. Towers, A. V. Buryak, R. A. Sammut, and B. A. Malomed, “Quadratic solitons resulting from double-resonance wave mixing,” J. Opt. Soc. Am. B 17, 2018–2025 (2000).
  27. V. V. Konotop and V. Kuzmiak, “Double-resonant processes in χ(2) nonlinear periodic media,” J. Opt. Soc. Am. B 17, 1874–1883 (2000).
  28. G. Assanto, I. Torelli, and S. Trillo, “All-optical processing by means of vectorial interactions in second-order cascading: novel approaches,” Opt. Lett. 19, 1720–1722 (1994).
  29. S. Trillo and G. Assanto, “Polarization spatial chaos in second harmonic generation,” Opt. Lett. 19, 1825–1827 (1994).
  30. A. D. Boardman and K. Xie, “Vector spatial solitons influenced by magneto-optic effects in cascadable nonlinear media,” Phys. Rev. E 55, 1899–1909 (1997).
  31. A. D. Boardman, P. Bontemps, and K. Xie, “Vector solitary optical beam control with mixed type I–type II second-harmonic generation,” Opt. Quantum Electron. 30, 891–905 (1998).
  32. S. Saltiel and Y. Deyanova, “Polarization switching as a result of cascading of two simultaneously phase-matched processes,” Opt. Lett. 24, 1296–1298 (1999).
  33. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-mm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998).
  34. K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. 16, 741–753 (1999).
  35. G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, and D. Fortusini, and J. N. Sherwood, “Frequency shifting through cascaded second-order processes in an N-(4-nitrophenyl)-L-prolinol crystal,” Opt. Lett. 23, 439–441 (1998).
  36. G. I. Petrov, O. Albert, J. Etchepare, and S. M. Saltiel, “Cross-polarized wave generation by effective cubic nonlinear optical interaction,” Opt. Lett. 26, 355–357 (2001).
  37. L. Lefort and A. Barthelemy, “Intensity-dependent polarization rotation associated with type II phase-matched second-harmonic generation: application to self-induced transparency,” Opt. Lett. 20, 1749–1751 (1995).
  38. L. Lefort and A. Barthelemy, “All-optical transistor action by polarization rotation during type-II phase-matched second harmonic generation,” Electron. Lett. 31, 910–911 (1995).
  39. I. Buchvarov, S. Saltiel, Ch. Iglev, and K. Koynov, “Intensity dependent change of the polarization state as a result of nonlinear phase shift in type II frequency doubling crystals,” Opt. Commun. 141, 173–179 (1997).
  40. M. Asobe, I. Yokohama, H. Itoh, and T. Kaino, “All-optical switching by use of cascading of phase-matched sum-frequency generation and difference-frequency generation processes in periodically poled LiNbO3,” Opt. Lett. 22, 274–276 (1997).
  41. M. A. Krumburel, J. N. Sweetser, D. N. Fittinghoff, K. W. DeLong, and R. Trebino, “Ultrafast optical switching by use of fully phase matched cascaded second-order nonlinearities in a polarization-gate geometry,” Opt. Lett. 22, 245–247 (1997).
  42. J. N. Sweetser, M. A. Krumburel, and R. Trebino, “Amplified ultrafast optical switching by cascading cascaded second-order nonlinearities in a polarization-gate geometry,” Opt. Commun. 142, 269–272 (1997).
  43. N. I. Zheludev and A. D. Petrenko, “Physical mechanisms of nonlinear optical activity in crystals,” Kristallografiya 29, 1045–1052 (1985) [ Sov. Phys. Crystallogr. 29, 613–617 (1984)].
  44. A. I. Kovrigin, D. V. Yakovlev, B. V. Zhdanov, and N. I. Zheludev, “Self-induced optical activity in crystals,” Opt. Commun. 35, 92–95 (1980).
  45. M. G. Dubenskaya, R. S. Zadoyan, and N. I. Zheludev, “Nonlinear polarization spectroscopy in GaAs crystals: one- and two-photon resonances, excitonic effects, and the saturation of nonlinear susceptibilities,” J. Opt. Soc. Am. B 2, 1174–1178 (1985).
  46. V. G. Dimitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1999).
  47. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
  48. M. Sheik-Bahae and M. Ebrahimzadeh, “Measurement of nonlinear refraction in the second-order χ(2) materials KTiOPO4, KNbO4, β-BaB2O4, and LiB3O5” Opt. Commun. 142, 294–298 (1997).
  49. G. I. Petrov, S. M. Saltiel, and A. B. Ivanova, “Measurement of χ(2) components by comparing polarization resolved second-order cascade processes,” in ICONO’98: Nonlinear Optical Phenomena, S. Chesnokov, V. Kandidov, and N. Koroteev, eds. Proc. Proc. SPIE 3733, 112–120 (1999).
  50. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators on bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
  51. S. M. Saltiel and Yu. S. Kivshar, “Phase-matching for nonlinear optical parametric processes with multistep-cascading,” Bulg. J. Phys. 27, 57–64 (2000).
  52. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, “Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixing in periodically poled crystals: application to a two-step 1.19–10.71-μm frequency bridge,” Opt. Lett. 22, 1211–1213 (1997).
  53. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett. 24, 1157–1159 (1999).
  54. O. Bang, C. B. Clausen, P. L. Christiansen, and L. Torner, “Engineering competing nonlinearities,” Opt. Lett. 24, 1413–1415 (1999).
  55. K. Fradkin-Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649–1656 (1999).
  56. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
  57. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4358 (2000).
  58. S. Saltiel and Yu. S. Kivshar, “Phase matching in χ(2) nonlinear photonics crystals,” Opt. Lett. 25, 1204–1206; erratum 25, 1612 (2000).
  59. A. Chowdhury, S. C. Hagness, and L. McCaughan, “Simultaneous optical wavelength interchange with a two-dimensional second-order nonlinear photonic crystal,” Opt. Lett. 25, 832–834 (2000).
  60. M. de Sterke, S. M. Saltiel, and Yu. S. Kivshar, “Efficient collinear fourth-harmonic generation by two-channel multistep cascading in a single two-dimensional nonlinear photonic crystal,” Opt. Lett. 26, 539–541 (2001).
  61. I. Shoji, H. Nakamura, K. Ohdaira, T. Kondo, R. Ito, T. Oka-moto, K. Tatsuki, and S. Kubota, “Absolute measurement of second-order nonlinear-optical coefficients of β-BaB2O4 for visible to ultraviolet second-harmonic wavelengths,” J. Opt. Soc. Am. B 16, 620–624 (1999).
  62. S. A. Akhmanov and A. S. Chirkin, Statistical Phenomena in Nonlinear Optics (Moscow State U. Press, Moscow, 1971; in Russian).
  63. Y. Deyanova, S. Saltiel, and K. Koynov, “Optimization of the process of frequency tripling and quadrupling in double grating quasi-phase matched structures,” Opt. Commun. 178, 437–447 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited