OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 2 — Feb. 1, 2002
  • pp: 312–318

Quantum magic bullets by means of entanglement

Seth Lloyd, Jeffrey H. Shapiro, and Franco N. C. Wong  »View Author Affiliations

JOSA B, Vol. 19, Issue 2, pp. 312-318 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (165 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two particles that are entangled with respect to continuous variables such as position and momentum exhibit a variety of nonclassical features. First, measurement of one particle projects the other particle into the state that is the complex conjugate of the state of the first particle; i.e., measurement of one particle projects the other particle into the time-reversed state. Second, continuous-variable entanglement can be used to implement a quantum magic bullet: When one particle manages to pass through a scattering potential, then, no matter how low the probability of this event, the second particle will also pass through a related scattering potential with probability 1. This phenomenon is investigated in terms of the original Einstein–Podolsky–Rosen state, and experimental realizations are suggested in terms of entangled photon states.

© 2002 Optical Society of America

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics
(270.6570) Quantum optics : Squeezed states

Seth Lloyd, Jeffrey H. Shapiro, and Franco N. C. Wong, "Quantum magic bullets by means of entanglement," J. Opt. Soc. Am. B 19, 312-318 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett and P. W. Shor, “Quantum information theory,” IEEE Trans. Inf. Theory 44, 2724–2742 (1998). [CrossRef]
  2. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935). [CrossRef]
  3. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998). [CrossRef] [PubMed]
  4. L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A 49, 1473–1476 (1994). [CrossRef] [PubMed]
  5. S. L. Braunstein, “Error correction for continuous quantum variables,” Phys. Rev. Lett. 80, 4084–4087 (1998). [CrossRef]
  6. S. L. Braunstein, “Quantum error correction for communication with linear optics,” Nature 394, 47–49 (1998). [CrossRef]
  7. S. Lloyd and J.-J. E. Slotine, “Analog quantum error correction,” Phys. Rev. Lett. 80, 4088–4091 (1998). [CrossRef]
  8. S. Lloyd and S. L. Braunstein, “Quantum computation over continuous variables,” Phys. Rev. Lett. 82, 1784–1787 (1999). [CrossRef]
  9. J. H. Shapiro, and K.-X. Sun, “Semiclassical versus quantum behavior in fourth-order interference,” J. Opt. Soc. Am. B 11, 1130–1141 (1994). [CrossRef]
  10. J. H. Shapiro and N. C. Wong, “An ultrabright narrowband source of polarization-entangled photon pairs,” J. Opt. B 2, L1–L4 (2000). [CrossRef]
  11. H. P. Yuen and J. H. Shapiro, “Optical Communication with two-photon coherent states. III. Quantum measurements realizable with photoemissive detectors,” IEEE Trans. Inf. Theory IT-26, 78–92 (1980). [CrossRef]
  12. M. D. Reid and P. D. Drummond, “Quantum correlations of phase in nondegenerate parametric oscillation,” Phys. Rev. Lett. 60, 2731–2733 (1988). [CrossRef] [PubMed]
  13. P. D. Drummond and M. D. Reid, “Correlations in nondegenerate parametric oscillation. II. Below threshold results,” Phys. Rev. A 41, 3930–3949 (1990). [CrossRef] [PubMed]
  14. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein–Podolsky–Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992). [CrossRef] [PubMed]
  15. Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Realization of the Einstein–Podolsky–Rosen paradox for continuous variables in nondegenerate parametric amplification,” Appl. Phys. B 55, 265–278 (1992). [CrossRef]
  16. S. Reynaud, C. Fabre, and E. Giacobino, “Quantum fluctuations in a two-mode parametric oscillator,” J. Opt. Soc. Am. B 4, 1520–1524 (1987). [CrossRef]
  17. K. W. Leong, N. C. Wong, and J. H. Shapiro, “Nonclassical intensity correlation from a type-I phase-matched optical parametric oscillator,” Opt. Lett. 15, 1058–1060 (1990). [CrossRef] [PubMed]
  18. J. Teja and N. C. Wong, “Twin-beam generation in a triply resonant dual-cavity optical parametric oscillator,” Opt. Express 2, 65–71 (1998), http://www.opticsexpress.org. [CrossRef] [PubMed]
  19. J. H. Shapiro, “Long-distance high-fidelity teleportation using singlet states,” in Quantum Communication, Computing, and Measurement 3, O. Hirota and P. Tombesi, eds. (Kluwer, New York, 2001), pp. 367–374.
  20. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef] [PubMed]
  21. M. Vasilyev, S. K. Choi, P. Kumar, and G. M. D’Ariano, “Tomographic measurement of joint photon statistics of the twin-beam quantum state,” Phys. Rev. Lett. 84, 2354–2357 (2000). [CrossRef] [PubMed]
  22. S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, “Long-distance, unconditional teleportation of atomic states via complete Bell state measurements,” Phys. Rev. Lett. 87, 167903 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited