OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 3 — Mar. 1, 2002
  • pp: 470–476

Nonlinearity management: a route to high-energy soliton fiber lasers

Fatih Ö. Ilday and Frank W. Wise  »View Author Affiliations

JOSA B, Vol. 19, Issue 3, pp. 470-476 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (177 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose the use of self-defocusing nonlinearities to control nonlinear phase shifts in soliton fiber lasers. By analogy to dispersion management, we refer to this scheme as nonlinearity management. First we describe a map that can be regarded as a combination of nonlinearity management and dispersion management. The map is designed to support solitons in two segments of alternating sign of nonlinearity and dispersion. Analytical and numerical calculations demonstrate that this map can be essentially free of spectral-sideband generation. Suppressing the spectral sidebands should make possible pulse energies 100 times greater than those of existing soliton fiber lasers. We also discuss the less than ideal case of direct reduction of average nonlinearity by use of self-defocusing nonlinearity segments without optimizing dispersion. The second scheme has the advantage of easier implementation. Practical implementations with existing materials are discussed.

© 2002 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(320.5540) Ultrafast optics : Pulse shaping
(320.7090) Ultrafast optics : Ultrafast lasers

Fatih Ö. Ilday and Frank W. Wise, "Nonlinearity management: a route to high-energy soliton fiber lasers," J. Opt. Soc. Am. B 19, 470-476 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. J. Qian, X. Liu, and F. W. Wise, “Femtosecond Kerr-lens mode locking with negative nonlinear phase shifts,” Opt. Lett. 24, 166–168 (1999). [CrossRef]
  2. X. Liu, L. Qian, and F. W. Wise, “High-energy pulse compression using negative phase shifts produced by the cascade χ(2)(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999). [CrossRef]
  3. C. Pare, A. Villeneuve, and P.-A. Belanger, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett. 21, 459–461 (1996). [CrossRef] [PubMed]
  4. C. Pare, A. Villeneuve, and S. LaRochelle, “Split compensation of dispersion and self-phase modulation in optical communication systems,” Opt. Commun. 160, 130–138 (1999). [CrossRef]
  5. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16, 502–504 (1991). [CrossRef] [PubMed]
  6. S. M. J. Kelly, “Characteristic side-band instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992). [CrossRef]
  7. B. A. Malomed, “Propagation of a soliton in a nonlinear waveguide with dissipation and pumping,” Opt. Commun. 61, 192–194 (1987). [CrossRef]
  8. K. Tamura, C. R. Doerr, H. A. Haus, and E. P. Ippen, “Soliton fiber ring laser stabilization and tuning with a broad intracavity filter,” IEEE Photonics Technol. Lett. 6, 697–699 (1994). [CrossRef]
  9. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993). [CrossRef] [PubMed]
  10. N. J. Smith, N. J. Doran, W. Forysiak, and F. M. Knox, “Soliton transmission using periodic dispersion compensation,” J. Lightwave Technol. 15, 1808–1822 (1997), and references therein. [CrossRef]
  11. D. J. Jones, Y. Chen, H. A. Haus, and E. P. Ippen, “Resonant sideband generation in stretched-pulse fiber lasers,” Opt. Lett. 23, 1535–1537 (1998). [CrossRef]
  12. G. Lenz, K. Tamura, H. A. Haus, and E. P. Ippen, “All-solid state femtosecond source at 1.55 μm,” Opt. Lett. 20, 1289–1291 (1995). [CrossRef] [PubMed]
  13. L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, “Efficient frequency doubling of a femtosecond fiber laser,” Opt. Lett. 21, 1759–1761 (1996). [CrossRef] [PubMed]
  14. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992). [CrossRef] [PubMed]
  15. R. Schiek, M. L. Sundheimer, D. Y. Kim, Y. Baek, G. I. Stegeman, H. Seibert, and W. Sohler, “Direct measurement of cascaded nonlinearity in lithium niobate channel waveguides,” Opt. Lett. 19, 1949–1951 (1994). [CrossRef] [PubMed]
  16. X. Liu, F. Ö. Ilday, K. Beckwitt, and F. W. Wise, “Femtosecond nonlinear polarization evolution based on cascade quadratic nonlinearities,” Opt. Lett. 25, 1394–1396 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited