OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 3 — Mar. 1, 2002
  • pp: 563–573

Vector spatial solitons in complex magneto-optic waveguides

Allan D. Boardman and Ming Xie  »View Author Affiliations

JOSA B, Vol. 19, Issue 3, pp. 563-573 (2002)

View Full Text Article

Acrobat PDF (561 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical and numerical investigation is presented of the behavior of magneto-optic TE–TM vector spatial solitons in the neighborhood of a waveguide discontinuity. A comprehensive perturbation theory is developed that leads to a global wave equation and a Lagrangian analysis of some of the soliton dynamics. The mathematics is supported by numerical simulations, and nonreciprocity, introduced by the magneto-optical influence, is clearly demonstrated. It is concluded that magneto-optic waveguides have great potential for use in nonlinear optics and in the anticipated improved chip technology.

© 2002 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(230.3120) Optical devices : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar
(310.6860) Thin films : Thin films, optical properties

Allan D. Boardman and Ming Xie, "Vector spatial solitons in complex magneto-optic waveguides," J. Opt. Soc. Am. B 19, 563-573 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. Y. Svirko, N. Zheludev, and M. Osipov, “Bilayered chiral structures,” Appl. Phys. Lett. 78, 498–500 (2001).
  2. F. Jonsson and C. Flytzanis, “Polarization state controlled multistability of a nonlinear magneto-optic cavity,” Phys. Rev. Lett. 82, 1426–1429 (1999).
  3. N. Bahlmann, M. Lohmeyer, O. Zhuromskyy, H. Dötsch, and P. Hertel, “Nonreciprocal coupled waveguides for integrated optical isolators and circulators for TM modes,” Opt. Commun. 161, 330–337 (1999).
  4. A. K. Zvezdin and V. A. Kotov, Modern Magneto-optics and Modern Magneto-optic Materials (Institute of Physics Publishing, Bristol, UK, 1997).
  5. V. I. Karpman, “Envelope solitons in gyrotropic media,” Phys. Rev. Lett. 74, 2455–2458 (1995).
  6. F. Jonsson and C. Flytzanis, “Optical parametric generation phase-matching in magneto-optic media,” Opt. Lett. 24, 1514–1516 (1999).
  7. A. D. Boardman and M. Xie, “Spatial solitons in discontinuous magneto-optic waveguides,” J. Opt. B 3, S244–S250 (2001).
  8. A. D. Boardman and K. Xie, “Vector spatial solitons influenced by magneto-optic effects in cascadable nonlinear media,” Phys. Rev. E 55, 1–11 (1997).
  9. A. D. Boardman and K. Xie, “Magnetic control of optical spatial solitons,” Phys. Rev. Lett. 75, 4591–4594 (1995).
  10. A. D. Boardman, K. Xie, and M. Xie, “Applied magnetooptic soliton dynamics: TM and TE-TM-driven dynamics,” Acta Polon. 99, 7–16 (2001).
  11. J. M. Hammer, J. H. Abeles, and D. J. Channin, “Polycrystalline–metal–ferromagnetic optical waveguide isolator (POWI) for monolithic-integration with diode-laser devices,” IEEE Photon. Technol. Lett. 9, 631–633 (1997).
  12. T. Mizumoto, H. Chihara, N. Tokui, and Y. Naito, “Verification of waveguide-type of optical circulator operation,” Electron. Lett. 26, 199–200 (1990).
  13. O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, H. Dötsch, P. Hertel, and A. F. Popkov, “Analysis of polarization independent Mach–Zehnder-type integrated optical isolator,” J. Lightwave Technol. 17, 1200–1205 (1999).
  14. W. Zaets and K. Ando, “Optical waveguide isolator based on nonreciprical loss/gain of amplifier covered by ferromagnetic layer,” IEEE Photon. Technol. Lett. 11, 1012–1014 (1999).
  15. W. Zaets and K. Ando, “Magnetically programmable bistable laser diode with ferromagnetic layer,” IEEE Photon. Technol. Lett. 13, 185–187 (2001).
  16. H. Dötsch, P. Hertel, B. Lührmann, S. Sure, H. P. Winkler, and M. Ye, “Application of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28, 2979–2984 (1992).
  17. E. Hecht and A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1974).
  18. J. Petykiewicz, Wave Optics (Kluwer Academic, Dordrecht, The Netherlands, 1992).
  19. S. Sugano and N. Kojima, eds., Magneto-Optics (Springer-Verlag, Berlin, 2000).
  20. T. Shintaku and T. Uno, “Optical waveguide isolator based upon non-reciprocal radiation,” J. Appl. Phys. 75, 8155–8159 (1994).
  21. J. A. Mizumoto and Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microwave Theory Tech. 30, 922–925 (1982).
  22. W. Hübner, “Magneto-optics goes nonlinear,” Phys. World (October 1995), pp. 21–22.
  23. R. J. Hicken and J. Wu, “Observation of ferromagnetic resonances in the time domain,” J. Appl. Phys. 85, 4580–4582 (1999).
  24. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).
  25. W. A. Schroeder, D. S. McCallum, D. R. Harken, M. D. Dvorak, D. R. Anderson, and A. L. Smirl, “Intrinsic and induced anisotropy of nonlinear absorption and refraction in zinc blende semiconductors,” J. Opt. Soc. Am. B 12, 401–414 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited