## Optical switching in nonlinear chiral distributed Bragg reflectors with defect layers

JOSA B, Vol. 19, Issue 4, pp. 630-639 (2002)

http://dx.doi.org/10.1364/JOSAB.19.000630

Acrobat PDF (234 KB)

### Abstract

We present a new iterative approach to obtain the electric field from the displacement field for a chiral medium with Kerr nonlinearity. In a study recently reported [P. Tran, J. Opt. Soc. Am. B **16**, 70 (1999)], this is done by a Newton–Raphson root-finding approach, which requires the initial guess to be near the solution. The new approach eliminates this requirement, and therefore it is more robust. We also study an all-optical switch using a chiral nonlinear thin-film Bragg reflector with two defect layers. This switch has a lower switching threshold than one using a perfect Bragg reflector. Since the switching operation is dependent on the shifting of the defect mode and not on the band edge (as in the case of a perfect multilayer structure), it should be less susceptible to manufacturing errors.

© 2002 Optical Society of America

**OCIS Codes**

(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers

(190.4360) Nonlinear optics : Nonlinear optics, devices

(230.1480) Optical devices : Bragg reflectors

**Citation**

L. Gilles and P. Tran, "Optical switching in nonlinear chiral distributed Bragg reflectors with defect layers," J. Opt. Soc. Am. B **19**, 630-639 (2002)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-4-630

Sort: Year | Journal | Reset

### References

- http://home.earthlink.net/~jpdowling/pbgbib.html; http://www.neci.nj.nec.com/homepages/vlasov/photonic.html; “Photonic band structures,” G. Kurizki and J. W. Hauss eds., J. Mod. Opt. 41, (1994), special issue; C. M. Bowden, J. P. Dowling, and H. O. Everitt, eds., “Development and applications of materials exhibiting photonic band gaps,” feature issue, J. Opt. Soc. Am. B 10, 280–413 (1993).
- E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
- E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rapper, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
- H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, Fla., 1985).
- J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, and J. H. English, “GaAs-AlAs monolithic microresonator arrays,” Appl. Phys. Lett. 51, 94–96 (1987).
- J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30, 811–812 (1994).
- B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
- C. Martijn De Sterke and J. E. Sipe, “Gap solitons,” Prog. Opt. 33, 203–260 (1994).
- W. Chen and D. L. Mills, “Gap solitons in nonlinear periodic structures,” Phys. Rev. Lett. 58, 160–163 (1987).
- D. L. Mills and S. E. Trullinger, “Gap solitons in nonlinear periodic structures,” Phys. Rev. B 36, 947–952 (1987).
- S. Lee and S. T. Ho, “Optical switching scheme based on the transmission of coupled gap solitons in nonlinear periodic media,” Opt. Lett. 18, 962–964 (1993).
- V. V. Konotop, “Vector gap solitons,” Phys. Rev. A 51, R3422–R3425 (1995).
- V. V. Konotop and G. P. Tsironis, “Dynamics of coupled gap solitons,” Phys. Rev. E 53, 5393–5398 (1996).
- M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrafast pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
- A. Kozhekin and G. Kurizki, “Self-induced transparency in Bragg reflectors,” Phys. Rev. Lett. 74, 5020–5023 (1995).
- M. Scalora, J. P. Dowling, M. J. Bloemer, and C. M. Bowden, “The photonic band edge optical diode,” J. Appl. Phys. 76, 2023–2026 (1994).
- M. Scalora, R. L. Flynn, S. B. Reinhardt, R. L. Fork, M. J. Bloemer, M. D. Tocci, J. Bendikson, H. Ledbetter, C. M. Bowden, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 76, R1078–R1081 (1996).
- J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
- A. E. Bieber, T. G. Brown, and R. C. Tiberio, “Optical switching in phase-shifted metal-semiconductor-metal Bragg reflectors,” Opt. Lett. 20, 2216–2218 (1995).
- S. Radic, N. George, and G. P. Agrawal, “Optical switching in λ/4-shifted nonlinear periodic structures,” Opt. Lett. 19, 1789–1791 (1994).
- P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
- A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984).
- B. A. Saleh and T. M. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
- P. Tran, “Optical switching with a nonlinear photonic crystal: a numerical study,” Opt. Lett. 21, 1138–1140 (1996).
- P. Tran, “Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect,” J. Opt. Soc. Am. B 14, 2589–2595 (1997).
- M. A. Krumbugel, J. N. Sweetser, D. N. Fittinghoff, K. W. DeLong, and R. Trebino, “Ultrafast optical switching by use of fully phase-matched cascaded second-order nonlinearities in a polarization-gate geometry,” Opt. Lett. 22, 245–247 (1997).
- R. Schiek, Y. Baek, G. Krijnen, G. I. Stegeman, I. Baumann, and W. Sohler, “All-optical switching in lithium niobate directional couplers with cascaded nonlinearity,” Opt. Lett. 21, 940–942 (1996).
- P. Tran, “All-optical switching with a nonlinear chiral photonic bandgap structure,” J. Opt. Soc. Am. B 16, 70–73 (1999).
- L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University, Cambridge, England, 1982).
- W. S. Weiglhofer, ed., Proceedings of Bianisotropics ’97, http://www.maths.gla.ac.uk/~tropics/.
- A. Lakhtakia, V. K. Varadan, and V. V. Varadan, “Time-harmonic electromagnetic fields in chiral media,” Lect. Notes Phys. 335 (1989).
- I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, Nonwood, Mass., 1994).
- R. C. Qiu and I.-Tai Lu, “Guided waves in chiral optical fibers,” J. Opt. Soc. Am. A 11, 3212–3219 (1994).
- Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circulariza tion filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
- I. J. Hodgkinson, A. Lakhtakia, and Q. H. Wu, “Experimental realization of sculptured thin film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39, 2828–2831 (2000).
- R. Luebbers, H. S. Langdon, F. Hunsberger, C. F. Bohren, and S. Yoshikawa, “Calculation and measurement of the effective chirality parameter of a composite chiral material over a wide frequency band,” IEEE Trans. Antennas Propag. 43, 123–129 (1995).
- J. V. Selinger and R. L. B. Selinger, “Cooperative chiral order in copolymers of chiral and achiral units,” Phys. Rev. E 55, 1728–1731 (1997).
- J. V. Selinger and R. L. B. Selinger, “Theory of chiral order in random copolymers,” Phys. Rev. Lett. 76, 58–61 (1996).
- K. Robbie, J. Sit, D. J. Broer, and M. J. Brett, “Chiral porous thin film/liquid crystal hybrid materials,” Proc. SPIE 3803, 26–33 (1999).
- Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J. C. Lee, and Y.-J. Jeon, “Photonic defect modes of cholesteric liquid crystals,” Phys. Rev. E 60, 6852–6854 (1999).
- S. L. McCall and P. M. Platzman, “An optimized π/2 distributed feedback laser,” IEEE J. Quantum Electron. 21, 1899–1904 (1985).
- A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).
- K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, Fla., 1993).
- P. Tran, “Photonic band structure calculation of material possessing Kerr nonlinearity,” Phys. Rev. B 52, 10673–10676 (1995).
- K. S. Yee, “Numerical solution of initial value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–306 (1966).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.