OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 640–649

Gordon–Haus timing jitter in dispersion-managed systems with lumped amplification: analytical approach

C. J. McKinstrie, J. Santhanam, and Govind P. Agrawal  »View Author Affiliations


JOSA B, Vol. 19, Issue 4, pp. 640-649 (2002)
http://dx.doi.org/10.1364/JOSAB.19.000640


View Full Text Article

Acrobat PDF (185 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use the moment method to calculate the Gordon–Haus timing jitter of optical pulses in dispersion-managed communication systems designed by use of lumped fiber amplifiers. The use of the Gaussian approximation for the chirped pulses, in combination with variational analysis, allows us to obtain an analytic expression for the timing jitter that is valid for an arbitrary number of amplifiers within each map period. We use this result to discuss how jitter is affected when more than one amplifier is used within each map period. We consider jitter for soliton-based systems as well as for low-power light-wave systems designed by use of the chirped return-to-zero format. In each case, the effects of dispersion compensation on the timing jitter are studied in detail.

© 2002 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Citation
C. J. McKinstrie, J. Santhanam, and Govind P. Agrawal, "Gordon–Haus timing jitter in dispersion-managed systems with lumped amplification: analytical approach," J. Opt. Soc. Am. B 19, 640-649 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-4-640


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986).
  2. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995).
  3. R. J. Essiambre and G. P. Agrawal, “Timing jitter of ultrashort solitons in high-speed communication systems: general formulation and application to dispersion-decreasing fibers,” J. Opt. Soc. Am. B 14, 314–322 (1997).
  4. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 1997), Chap. 10.
  5. E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (Wiley, New York, 1998), Chap. 5.
  6. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).
  7. V. S. Grigoryan, C. R. Menyuk, and R. M. Mu, “Calculation of timing and amplitude jitter in dispersion-managed optical fiber communications using linearization,” J. Lightwave Technol. 17, 1347–1356 (1999).
  8. J. Santhanam, C. J. McKinstrie, T. I. Lakoba, and G. P. Agrawal, “Effects of precompensation and postcompensation on timing jitter in dispersion-managed systems,” Opt. Lett. 26, 1131–1133 (2001).
  9. S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, “Averaged description of wave beams in linear and nonlinear media (the method of moments),” Radiophys. Quantum Electron. 14, 1062–1070 (1971).
  10. I. R. Gabitov, E. G. Shapiro, and S. K. Turitsyn, “Optical pulse dynamics in fiber links with dispersion compensation,” Opt. Commun. 134, 317–329 (1997).
  11. V. S. Grigoryan, T. Yu, E. A. Golovchenko, C. R. Menyuk, and A. N. Pilipetskii, “Dispersion-managed soliton dynamics,” Opt. Lett. 23, 1609–1611 (1997).
  12. V. S. Grigoryan and C. R. Menyuk, “Dispersion-managed solitons at normal average dispersion,” Opt. Lett. 23, 609–611 (1998).
  13. A. Berntson, N. J. Doran, W. Forysiak, and J. H. B. Nijhof, “Power dependence of dispersion-managed solitons for anomalous, zero, and normal path-average dispersion,” Opt. Lett. 23, 900–902 (1998).
  14. T. I. Lakoba, J. Yang, D. J. Kaup, and B. A. Malomed, “Conditions for stationary pulse propagation in the strong dispersion management regime,” Opt. Commun. 149, 366–375 (1998).
  15. L. F. Mollenauer, J. P. Gordon, and P. V. Mamyshev, in Optical Fiber Telecommunications, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), Vol. 3A, Chap. 12; see also references therein.
  16. E. Yamada, H. Kubota, T. Yamamoto, A. Sahara, and M. Nakazawa, “10 Gbit/s, 10600km, dispersion-allocated soliton transmission using conventional 1.3 μm single mode fibres,” Electron. Lett. 33, 602–603 (1997).
  17. I. S. Penketh, P. Harper, S. B. Alleston, A. M. Niculae, I. Bennion and N. J. Doran, “10-Gbit/s dispersion-managed soliton transmission over 16, 500 km in standard fiber by reduction of soliton interactions,” Opt. Lett. 24, 802–804 (1999).
  18. L. F. Mollenauer, P. V. Mamyshev, J. Gripp, M. J. Neubelt, N. Mamysheva, L. Gruener-Nielsen, and T. Veng, “Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons,” Opt. Lett. 25, 704–706 (2000).
  19. A. Yariv, “Signal-to-noise considerations in fiber links with periodic or distributed optical amplification,” Opt. Lett. 15, 1064–1066 (1990).
  20. W. Forysiak, K. J. Blow, and N. J. Doran, “Reduction of Gordon–Haus jitter by posttransmission dispersion compensation,” Electron. Lett. 29, 1225–1226 (1993).
  21. A. D. Ellis and D. M. Spirit, “Unrepeatered transmission over 80 km standard fibre at 40 Gbit/s,” Electron. Lett. 30, 72–74 (1994).
  22. R. Ludwig, W. Pieper, H. G. Weber, D. Breuer, K. Petermann, F. Kueppers, and A. Mattheus, “Unrepeatered 40 Gbit/s RZ single-channel transmission over 150km of standard single-mode fibre at 1.55 μm,” Electron. Lett. 33, 76–77 (1997).
  23. D. Breuer, H. J. Ehrke, F. Kueppers, R. Ludwig, K. Petermanm, H. G. Weber, and K. Weich, “Unrepeated 40-Gb/s RZ single-channel transmission at 1.55 μm using various fiber types,” Photonics Technol. Lett. 10, 822–824 (1998).
  24. E. A. Golovchenko, A. N. Pilipetskii, N. S. Bergano, C. R. Davidson, F. I. Khatri, R. M. Kimball, and V. J. Mazurczyk, “Modeling of transoceanic fiber-optic WDM communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 337–347 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited