OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 667–671

Compensating for birefringence in active elements of solid-state lasers: novel method

Efim Khazanov, Anatoly Potemkin, and Eugeny Katin  »View Author Affiliations

JOSA B, Vol. 19, Issue 4, pp. 667-671 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (222 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is shown that a uniaxial crystal (cut along the optical axis) placed inside a telescope may compensate for thermally induced birefringence in laser-active elements. Depolarization was reduced in an experiment by an order of magnitude.

© 2002 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(260.1440) Physical optics : Birefringence

Efim Khazanov, Anatoly Potemkin, and Eugeny Katin, "Compensating for birefringence in active elements of solid-state lasers: novel method," J. Opt. Soc. Am. B 19, 667-671 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999).
  2. Y. Liao, R. J. D. Miller, and M. R. Armstrong, “Pressure tuning of thermal lensing for high-power scaling,” Opt. Lett. 24, 1343–1345 (1999). [CrossRef]
  3. E. Khazanov, N. Andreev, O. Palashov, and D. Reitze, “Use of mechanical stress in design of a Faraday isolator for high power radiation,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 321–322.
  4. N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, and G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS cells,” Laser Phys. 2, 1–19 (1992).
  5. D. A. Rockwell, “A review of phase-conjugate solid-state laser,” IEEE J. Quantum Electron. 24, 1124–1140 (1988). [CrossRef]
  6. W. A. Clarkson, N. S. Felgate, and D. C. Hanna, “Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett. 24, 820–822 (1999). [CrossRef]
  7. R. Hua, S. Wada, and H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolariza- tion loss from thermally induced birefringence in Nd:YAG lasers,” Opt. Commun. 175, 189–200 (2000). [CrossRef]
  8. R. Kandasamy, M. Yamanaka, Y. Izawa, and S. Nakui, “Analysis of birefringence compensation using a quarter-wave plate in solid-state lasers,” Opt. Rev. 7, 149–151 (2000). [CrossRef]
  9. E. A. Lundstrom, “Waveplate for correcting thermally induced stress birefringence in solid state lasers,” U.S. patent 4, 408, 334 (October 4, 1983).
  10. G. Giuliani and P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980). [CrossRef]
  11. M. Martinelly, “A universal compensator for polarization changes induced birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989). [CrossRef]
  12. N. Andreev, S. V. Kuznetsov, O. Palashov, G. Pasmanik, and E. Khazanov, “Four-pass YAG–Nd laser amplifier with compensation for aberration and polarization distortions of the wave front,” Sov. J. Quantum Electron. 22, 800–802 (1992) [Kvant. Elektron. (Moscow) 19, 862–864 (1992)]. [CrossRef]
  13. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999). [CrossRef]
  14. E. A. Khazanov, “New Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001) [Kvant. Elektron. (Moscow) 31, (2001)]. [CrossRef]
  15. W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971). [CrossRef]
  16. N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, and G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Elektron. (Moscow) 18, 1154–1160 (1991)].
  17. D. Pohl, “Operation of ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972). [CrossRef]
  18. L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1. Theory,” Sov. J. Quantum Electron. 9, 1506–1508 (1979) [Kvant. Elektron. 6, 2546–2551 (1979)].
  19. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of TGG crystal orientation on the isolation ratio of the Faraday isolator at a high average power,” Appl. Opt. 41, 483–492 (2002). [CrossRef] [PubMed]
  20. G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970). [CrossRef]
  21. J. F. Nye, Physical Properties of Crystals (Oxford University, London, 1964).
  22. N. Pavel, Y. Hirano, S. Yamamoto, Y. Koyata, and T. Tajime, “Improved pump-beam distribution in a diode side-pumped solid-state laser with a highly diffuse, cross-axis beam delivery system,” Appl. Opt. 39, 986–992 (2000). [CrossRef]
  23. N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Poteomkin, D. Reitze, A. M. Sergeev, and E. A. Khazanov, “Use of crystal quartz for compensation of thermally induced depolarization in Faraday isolators,” Kvant. Elektron. (Moscow) 32, 91–94 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited