OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 695–702

Radiation-related polarization instability of Kerr spatial vector solitons

Roman R. Malendevich, Lars Friedrich, George I. Stegeman, Jose M. Soto-Crespo, Nail N. Akhmediev, and James Stewart Aitchison  »View Author Affiliations


JOSA B, Vol. 19, Issue 4, pp. 695-702 (2002)
http://dx.doi.org/10.1364/JOSAB.19.000695


View Full Text Article

Acrobat PDF (484 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the experimental observation and numerical simulations of a polarization instability of spatial vector solitons in an AlGaAs slab waveguide. At power levels where the nonlinear index change becomes comparable to the birefringence, the fast soliton becomes unstable. The instability is related to coupling of the fast soliton to the slow radiation modes through phase matching. The combined effects of bifurcation and radiation coupling are the processes ultimately limiting the stability of any single-polarization (fast and slow) Kerr soliton.

© 2002 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.3510) Lasers and laser optics : Lasers, fiber

Citation
Roman R. Malendevich, Lars Friedrich, George I. Stegeman, Jose M. Soto-Crespo, Nail N. Akhmediev, and James Stewart Aitchison, "Radiation-related polarization instability of Kerr spatial vector solitons," J. Opt. Soc. Am. B 19, 695-702 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-4-695


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
  2. V. E. Zakharov and A. B. Shabat, “Exact theory of two dimensional self focusing and one dimensional self modulation of nonlinear waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 61, 118–127 (1971) [Sov. Phys. JETP 34, 62–69 (1972)].
  3. C. R. Menyuk, “Soliton robustness in optical fibers,” J. Opt. Soc. Am. B 10, 1585–1591 (1993).
  4. N. J. Zabusky and M. D. Kruskal, “Interaction of solitons in a collisionless plasma and the recurrence of initial states,” Phys. Rev. Lett. 15, 240–243 (1965).
  5. V. N. Vlasov, I. A. Petrishev, V. I. Talanov, and Izv. Vuzov, Radiofizika 14, 1353 (1971); J. J. Rasmussen and K. Ripdal, “Blow-up in nonlinear Schrödinger equations. I. A general review,” Phys. Scr. 33, 481–497 (1986).
  6. P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiation by ‘solitons’ at zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
  7. N. N. Akhmediev and J. M. Soto-Crespo, “Dynamics of solitonlike pulse propagation in birefringent optical fibers,” Phys. Rev. E 49, 5742–5754 (1994).
  8. A. V. Buryak and N. N. Akhmediev, “Influence of radiation on soliton dynamics in nonlinear fibre couplers,” Opt. Commun. 110, 287–292 (1994).
  9. N. N. Akhmediev, A. Buryak, and J. M. Soto-Crespo, “Elliptically polarized solitons in birefringent optical fibers,” Opt. Commun. 112, 278–282 (1994).
  10. W. Wang, R. Barille, and G. Rivoire, “Influence of soliton propagation on the beam-polarization dynamics in a planar waveguide,” J. Opt. Soc. Am. B 15, 2731–2737 (1998).
  11. Y. Chen, “Stability criterion of coupled soliton states,” Phys. Rev. E 57, 3542–3550 (1998).
  12. D. C. Hutchings, J. M. Arnold, and D. F. Parker, “Stationary mixed-polarization spatial solitons and their stability in semiconductor waveguides,” Phys. Rev. E 58, 6649–6658 (1998).
  13. E. A. Ostrovskaja, N. N. Akhmediev, G. I. Stegeman, J. U. Kang, and J. S. Aitchison, “Mixed-mode spatial solitons in semiconductor waveguides,” J. Opt. Soc. Am. B 14, 880–887 (1997).
  14. K. J. Blow, N. J. Doran, and D. Wood, “Polarization instabilities for solitons in birefringent fibers,” Opt. Lett. 12, 202–204 (1987).
  15. E. M. Wright, G. I. Stegeman, and S. Wabnitz, “Solitary-wave decay and symmetrybreaking instabilities in two-mode fibers,” Phys. Rev. A 40, 4455–4466 (1989).
  16. C. M. De Sterke and J. E. Sipe, “Polarization instability in a waveguide geometry,” Opt. Lett. 16, 202–204 (1991).
  17. Y. Barad and Y. Silberberg, “Polarization evolution and polarization instability of solitons in a birefringent optical fiber,” Phys. Rev. Lett. 78, 3290–3293 (1997).
  18. S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in optical fiber,” Phys. Rev. Lett. 82, 3988–3991 (1999).
  19. J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
  20. D. C. Hutchings, J. M. Arnold, and J. S. Aitchison, “Theory of mixed-polarization propagation in anisotropic cubic media,” Opt. Quantum Electron. 30, 771–782 (1998).
  21. N. N. Akhmediev, A. V. Buryak, J. M. Soto-Crespo, and D. R. Andersen, “Phase-locked stationary soliton states in birefringent nonlinear optical fibers,” J. Opt. Soc. Am. B 12, 434–439 (1995).
  22. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, E. Ostrovskaya, and N. Akhmediev, “Power-dependent polarization dynamics of mixed-mode spatial solitary waves in AlGaAs waveguides,” J. Opt. Soc. Am. B 14, 3032–3037 (1997).
  23. For completely equivalent discussion for temporal soliton, see G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited