OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 722–731

SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides

John E. Heebner, Robert W. Boyd, and Q-Han Park  »View Author Affiliations


JOSA B, Vol. 19, Issue 4, pp. 722-731 (2002)
http://dx.doi.org/10.1364/JOSAB.19.000722


View Full Text Article

Enhanced HTML    Acrobat PDF (468 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider the linear and nonlinear optical properties of an optical waveguide consisting of a side-coupled integrated spaced sequence of resonators (SCISSOR). This fully transmissive system possesses large and controllable dispersion because the phase shift imparted by each resonator is strongly frequency dependent. Additionally, near resonance, the circulating power in each resonator can greatly exceed the power carried by the waveguide, leading to greatly enhanced nonlinear effects. We show that the effects of nonlinearity and dispersion can be balanced to create temporal solitons and that many other novel and useful pulse propagation effects can occur over short propagation distances in such a structure.

© 2002 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.4310) Integrated optics : Nonlinear
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Citation
John E. Heebner, Robert W. Boyd, and Q-Han Park, "SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides," J. Opt. Soc. Am. B 19, 722-731 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-4-722


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992). [CrossRef]
  2. Y. Yamamoto and R. E. Slusher, “Optical Processes in microcavities,” Phys. Today 46(6), 66–74 (1993). [CrossRef]
  3. J. C. Knight, H. S. T. Driver, R. J. Hutcheon, and G. N. Robertson, “Core-resonance capillary-fiber whispering-gallery-mode laser,” Opt. Lett. 17, 1280–1282 (1992). [CrossRef] [PubMed]
  4. J. Popp, M. H. Fields, and R. K. Chang, “Q-switching by saturable absorption in microdroplets: elastic scattering and laser emission,” Opt. Lett. 22, 1296–1298 (1997). [CrossRef]
  5. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997). [CrossRef]
  6. S. Schiller and R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in large dielectric spheres,” Opt. Lett. 16, 1138–1140 (1991). [CrossRef] [PubMed]
  7. V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998). [CrossRef]
  8. C. K. Madsen and G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett. 10, 994–996 (1998). [CrossRef]
  9. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Rev. A 137, 393–397 (1989).
  10. F. C. Blom, D. R. van Dijk, H. J. Hoekstra, A. Driessen, and Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997). [CrossRef]
  11. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23, 247–249 (1998). [CrossRef]
  12. V. B. Braginsky and V. S. Ilchenko, “Properties of optical dielectric microresonators,” Sov. Phys. Dokl. 32, 306–307 (1987).
  13. We define the finesse as the FSR divided by the full width at half-depth (FWHD) of the resonance peak. Applying this definition to either the phase sensitivity or the intensity buildup, the finesse is calculated as F=FSRFWHD=2π2 arccos[2r/(1+r2)] →r≈1 π1−r.
  14. Implicit in this assumption is that each resonator is not strongly driven; i.e., the transmitted phase shift Φ per resonator is small with respect to unity.
  15. G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron. 34, 1390–1402 (1998). [CrossRef]
  16. For the purpose of quoting the material nonlinearity of standard silica fiber, we have defaulted to a more intuitive definition of the nonlinear coefficient γ such that γPL is the nonlinear phase shift acquired for a power level of P over a distance L.
  17. J. E. Heebner and R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett. 24, 847–849 (1999). [CrossRef]
  18. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).
  19. The values of keff and γeff are lowered by factors of 3/4 and 9/16, respectively, from their given maximum values when operating at dispersion extremum points.
  20. The simulations used to study pulse evolution in a sequence of waveguide-coupled resonators were carried out by an iterative method in which each iteration consisted of linear and nonlinear phase accumulation during one round trip within the resonator followed by interference at the coupler. Traditional beam or pulse propagation split-step Fourier methods are unnecessary, as structural dispersion possessing a discrete impulse response, is more readily treated in the time domain.
  21. Additionally, higher-order dispersive or nonlinear effects render the scattering of solitons inelastic. Under these conditions, the term “solitary wave” is more appropriate.
  22. To expand Eq. (18) correctly, the B term must also be expanded, which will generate more time derivative terms within the square brackets. Thus the SS contribution will consist of not only two m=2 terms but also one m=1 term. For terms such that m>1, the time derivatives implicitly appear to the far left of each term when the square brackets are expanded.
  23. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).
  24. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Jonekis, and P.-T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25, 554–556 (2000). [CrossRef]
  25. Y. Xu, R. K. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” J. Opt. Soc. Am. B 17, 387–400 (2000). [CrossRef]
  26. Including the effects of attenuation, the finesse is calculated as F=2π2 arccos{2ra/[1+(ra)2]} →ra≈1 π1−ra, and the transmission is given by T=a2−2ra cos ø+r21−2ra cos ø+(ra)2, where a is the transmission coefficient for a single pass around the resonator. If the attenuation is comparable with the cross coupling, light is resonantly attenuated strongly. Under the condition known as critical coupling (r=a), the finesse drops by a factor of 2 and, more important, the transmission drops to zero.
  27. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996). [CrossRef] [PubMed]
  28. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000). [CrossRef]
  29. B. E. Little and S. T. Chu, “Estimating surface roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996). [CrossRef] [PubMed]
  30. A. Taflove and S. C. Hagness, Computational Electrodynamics, the Finite-Difference Time-Domain Method (Artech House, Boston, 2000).
  31. S. Blair, J. E. Heebner, and R. W. Boyd, “Beyond the absorption-limited nonlinear phase shift with micro-ring resonators,” Opt. Lett. (to be published).
  32. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987). [CrossRef] [PubMed]
  33. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996). [CrossRef] [PubMed]
  34. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]
  35. B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344–346 (2000). [CrossRef]
  36. S. Pereira, J. E. Sipe, J. E. Heebner, and R. W. Boyd, “Gap solitons in a two-channel side-coupled, integrated, space sequence of resonator structure,” Opt. Lett (to be published).
  37. M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997). [CrossRef]
  38. A. B. Matsko, Y. V. Rostovtsev, H. Z. Cummins, and M. O. Scully, “Using slow light to enhance acousto-optical effects: application to squeezed light,” Phys. Rev. Lett. 84, 5752–5755 (2000). [CrossRef] [PubMed]
  39. A. B. Matsko, Y. V. Rostovtsev, M. Fleischhauer, and M. O. Scully, “Anomalous stimulated Brillouin scattering via ultraslow light,” Phys. Rev. Lett. 86, 2006–2009 (2001). [CrossRef] [PubMed]
  40. S. Arnold, C. T. Liu, W. B. Whitten, and J. M. Ramsey, “Room-temperature microparticle-based persistent spectral hole burning memory,” Opt. Lett. 16, 420–422 (1991). [CrossRef] [PubMed]
  41. N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, and V. Lefevre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett. 20, 813–815 (1995). [CrossRef] [PubMed]
  42. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6 nm free-spectral range,” Opt. Lett. 22, 1244 (1997). [CrossRef] [PubMed]
  43. J.-P. Laine, B. E. Little, and H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett. 11, 1429–1430 (1999). [CrossRef]
  44. M. Cai, O. Painter, and K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000). [CrossRef] [PubMed]
  45. B. E. Little and S. T. Chu, “Toward very large-scale integrated photonics,” Opt. Photon. News 11, November2000, pp. 24–29. [CrossRef]
  46. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited