OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 740–746

Stability of pulses in the master mode-locking equation

Todd Kapitula, J. Nathan Kutz, and Björn Sandstede  »View Author Affiliations

JOSA B, Vol. 19, Issue 4, pp. 740-746 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (181 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The master mode-locking equation is a canonical model for mode locking in solid-state lasers. We consider the dynamics and stability of the localized pulse solutions that this equation admits of. We provide analytic proof of stable mode-locking behavior along with analysis that shows that mode locking can become destabilized as a result of either a radiation-mode or a saddle-node instability. This is to our knowledge the first analytic proof of the stability of the pulse solutions that takes the time-dependent gain saturation mechanism of mode-locked lasers into account.

© 2002 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers

Todd Kapitula, J. Nathan Kutz, and Björn Sandstede, "Stability of pulses in the master mode-locking equation," J. Opt. Soc. Am. B 19, 740-746 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991). [CrossRef]
  2. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse modelocking and Kerr lens modelocking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992). [CrossRef]
  3. C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Soliton fiber ring laser,” Opt. Lett. 17, 417–419 (1992). [CrossRef] [PubMed]
  4. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse modelocked erbium fiber ring laser,” Electron. Lett. 28, 2226–2228 (1992). [CrossRef]
  5. H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–208 (1994). [CrossRef]
  6. M. E. Fermann, M. J. Andrejco, Y. Silverberg, and M. L. Stock, “Passive mode locking by using nonlinear polarization evolution in a polarizing-maintaining erbium-doped fiber laser,” Opt. Lett. 29, 447–449 (1993).
  7. I. N. Duling III, “Subpicosecond all-fiber erbium laser,” Electron. Lett. 27, 544–545 (1991). [CrossRef]
  8. D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Self-starting, passively modelocked erbium fiber laser based on the amplifying Sagnac switch,” Electron. Lett. 27, 542–544 (1991). [CrossRef]
  9. M. L. Dennis and I. N. Duling III, “High repetition rate figure eight laser with extra-cavity feedback,” Electron. Lett. 28, 1894–1896 (1992). [CrossRef]
  10. J. W. Haus, G. Shaulov, E. A. Kuzin, and J. Sánchez-Mondragón, “Vector soliton fiber lasers,” Opt. Lett. 24, 376–378 (1999). [CrossRef]
  11. F. X. Kartner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett. 20, 16–18 (1995). [CrossRef] [PubMed]
  12. J. N. Kutz, B. C. Collings, K. Bergman, S. Tsuda, S. Cundiff, W. H. Knox, P. Holmes, and M. Weinstein, “Mode-locking pulse dynamics in a fiber laser with a saturable Bragg reflector,” J. Opt. Soc. Am. B 14, 2681–2690 (1997). [CrossRef]
  13. S. Tsuda, W. H. Knox, E. A. DeSouza, W. J. Jan, and J. E. Cunningham, “Low-loss intracavity AlAs/AlGaAs saturable Bragg reflector for femtosecond mode locking in solid-state lasers,” Opt. Lett. 20, 1406–1408 (1995). [CrossRef] [PubMed]
  14. I. P. Christov, H. C. Kapteyn, M. M. Murnane, C. P. Huang, and J. P. Zhou, “Space–time focusing of femtosecond pulses in Ti:sapphire,” Opt. Lett. 20, 309–311 (1995). [CrossRef] [PubMed]
  15. I. P. Christov, V. Stoev, M. Murnane, and H. Kapteyn, “Sub-10-fs operation of Kerr-lens mode-locked lasers,” Opt. Lett. 21, 1493–1495 (1996). [CrossRef] [PubMed]
  16. I. P. Christov, M. M. Murnane, H. C. Kapteyn, J. P. Zhou, and C. P. Huang, “Fourth-order dispersion-limited solitary pulses,” Opt. Lett. 19, 1465–1466 (1994). [CrossRef] [PubMed]
  17. N. R. Pereira and L. Stenflo, “Nonlinear Schrödinger equation including growth and damping,” Phys. Fluids 20, 1733–1734 (1977). [CrossRef]
  18. A. Mielke, P. Holmes, and J. N. Kutz, “Global existence and uniqueness for an optical fibre laser model,” Nonlinearity 11, 1489–1504 (1998). [CrossRef]
  19. D. J. Kaup, “Perturbation theory for solitons in optical fibers,” Phys. Rev. A 42, 5689–5694 (1990). [CrossRef] [PubMed]
  20. T. Kapitula and B. Sandstede, “Instability mechanism for bright solitary-wave solutions to the cubic-quintic Ginzburg–Landau equation,” J. Opt. Soc. Am. B 15, 2757–2762 (1998). [CrossRef]
  21. T. Kapitula and B. Sandstede, “Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations,” Physica D 124, 58–103 (1998). [CrossRef]
  22. D. Pelinovsky, Y. Kivshar, and V. Afanasjev, “Internal modes of envelope solitons,” Physica D 116, 121–142 (1998). [CrossRef]
  23. B. Sandstede and A. Scheel, “Essential instability of pulses, and bifurcations to modulated travelling waves,” Proc. R. Soc. Edinburgh, Sect. A 129, 1263–1290 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited