OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 747–752

Dynamical properties of two-dimensional Kerr cavity solitons

William J. Firth, Graeme K. Harkness, Angus Lord, John M. McSloy, Damià Gomila, and Pere Colet  »View Author Affiliations


JOSA B, Vol. 19, Issue 4, pp. 747-752 (2002)
http://dx.doi.org/10.1364/JOSAB.19.000747


View Full Text Article

Acrobat PDF (340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the results of our study of the dynamics of two-dimensional Kerr cavity solitons. The solitons are absolutely stable over a substantial parameter domain. We analyze their dynamics beyond the instability boundary, finding regions of stable oscillation and of fivefold or sixfold azimuthal instability. The Hopf oscillation is surprisingly robust, owing to the influence of a lower-amplitude unstable soliton.

© 2002 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.1450) Nonlinear optics : Bistability
(190.3270) Nonlinear optics : Kerr effect
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Citation
William J. Firth, Graeme K. Harkness, Angus Lord, John M. McSloy, Damià Gomila, and Pere Colet, "Dynamical properties of two-dimensional Kerr cavity solitons," J. Opt. Soc. Am. B 19, 747-752 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-4-747


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. L. A. Lugiato, ed., Special issue on nonlinear optical systems, chaos, and noise, Chaos, Solitons Fractals 4, 1251–1258 (1994).
  2. D. W. McLaughlin, J. V. Moloney, and A. C. Newell, “Solitary waves as fixed-points of infinite-dimensional maps in an optical bistable ring cavity,” Phys. Rev. Lett. 51, 75–78 (1983).
  3. J. V. Moloney and A. C. Newell, Nonlinear Optics (Addison-Wesley, Redwood City, Calif., 1992).
  4. N. N. Rosanov and G. V. Khodova, “Switching of a bistable interferometer on localized inhomogeneities,” Opt. Spectrosc. (USSR) 65, 1399–1401 (1988).
  5. N. N. Rosanov and G. V. Khodova, “Diffractive autosolitons in nonlinear interferometers,” J. Opt. Soc. Am. B 7, 1057–1065 (1990).
  6. G. S. McDonald and W. J. Firth, “Spatial solitary-wave optical memory,” J. Opt. Soc. Am. B 7, 1328–1335 (1990).
  7. S. Wabnitz, “Suppression of interactions in a phase-locked soliton optical memory,” Opt. Lett. 18, 601–603 (1993).
  8. G. S. McDonald and W. J. Firth, “Switching dynamics of spatial solitary wave pixels,” J. Opt. Soc. Am. B 10, 1081–1089 (1993).
  9. M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
  10. W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
  11. W. J. Firth and A. Lord, “Two-dimensional solitons in a Kerr cavity,” J. Mod. Opt. 43, 1071–1077 (1996).
  12. W. J. Firth, A. Lord, and A. J. Scroggie, “Optical bullet holes,” Phys. Scr. T67, 12–16 (1996).
  13. M. Brambilla, L. A. Lugiato, and M. Stefani, “Interaction and control of optical localized structures,” Europhys. Lett. 34, 109–114 (1996).
  14. M. Tlidi and P. Mandel, “Spatial patterns in nascent optical bistability,” Chaos, Solitons Fractals 4, 1475–1485 (1996).
  15. A. J. Scroggie, W. J. Firth, G. S. McDonald, M. Tlidi, R. Lefever, and L. A. Lugiato, “Pattern formation in a passive Kerr cavity,” Chaos, Solitons Fractals 4, 1323–1354 (1996).
  16. S. Longhi, “Dark solitons in degenerate optical parametric oscillators,” Opt. Lett. 21, 860–862 (1996).
  17. G. Steinmeyer, A. Schwache, and F. Mitschke, “Quantitative characterization of turbulence in an optical experiment,” Phys. Rev. E 53, 5399–5402 (1996).
  18. M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
  19. L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
  20. V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss, “Patterns and localized structures in bistable semiconductor resonators,” Phys. Rev. A 61, 0638–18 (2000).
  21. C. Etrich, U. Peschel, and F. Lederer, “Solitary waves in quadratically nonlinear resonators,” Phys. Rev. Lett. 79, 2454–2457 (1997).
  22. D. Michaelis, U. Peschel, and F. Lederer, “Multistable localized structures and superlattices in semiconductor optical resonators,” Phys. Rev. A 56, R3366–R3373 (1997).
  23. K. Staliunas and V. J. Sanchez-Morillo, “Localized structures in degenerate parametric oscillators,” Opt. Commun. 139, 306–312 (1997).
  24. M. Tlidi, P. Mandel, and M. Haelterman, “Spatiotemporal patterns and localized structures in nonlinear optics,” Phys. Rev. E 56, 6524–6530 (1997).
  25. D. V. Skryabin and W. J. Firth, “Interaction of cavity solitons in degenerate optical parametric oscillators,” Opt. Lett. 24, 1056–1058 (1999).
  26. I. V. Barashenkov and E. V. Zelyanaya, “Stable complexes of parametrically driven, damped nonlinear Schrödinger solitons,” Phys. Rev. Lett. 83, 2568–2571 (1999).
  27. W. J. Firth and G. K. Harkness, “Cavity solitons,” Asian J. Phys. 7, 665–677 (1998).
  28. N. N. Rosanov, D. V. Fedorov, and G. V. Khodova, “Particle-like light structures in the wide-aperture laser with saturating absorption,” J. Exp. Theor. Phys. 107, 376–392 (1995).
  29. B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, “Interaction of localized structures in an optical pattern-forming system,” Phys. Rev. Lett. 85, 748–751 (2000).
  30. W. J. Firth, “Processing information with arrays of spatial solitons,” in Photonics Devices, and Systems, M. Hrabovsky, M. Miller, and P. Tomanek, eds., Proc. SPIE 4016, 388–394 (2000).
  31. G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. Perrini, and L. A. Lugiato, “Cavity solitions in passive bulk semiconductor microcavities. I. Microscopic model and modulational instabilities,” J. Opt. Soc. Am. B 16, 2083–2094 (1999).
  32. G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. Perrini, and L. A. Lugiato, “Cavity solitons in passive bulk semiconductor microcavities. II. Dynamical properties and control,” J. Opt. Soc. Am. B 16, 2095–2105 (1999).
  33. T. Maggipinto, M. Brambilla, G. K. Harkness, and W. J. Firth, “Cavity solitons in semiconductor microresonators: existence, stability, and dynamical properties,” Phys. Rev. E 62, 8726–8739 (2000).
  34. A. Schreiber, B. Thüering, M. Kreuzer, and T. Tschudi, “Experimental investigation of solitary structures in a nonlinear optical feedback system,” Opt. Commun. 136, 415–418 (1997).
  35. N. N. Akhmediev and A. Ankiwicz, Solitons: Nonlinear Pulses and Beams (Chapman & Hall, London, 1997).
  36. A. C. Newell, Solitons in Mathematics & Physics (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1987).
  37. D. Gomila, M. Santagiustina, P. Colet, and M. San Miguel, “From hexagons to optical turbulence,” preprint.
  38. L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58, 2209–2211 (1987).
  39. D. V. Skryabin, “Energy of the soliton internal modes and broken symmetries in nonlinear optics,” J. Opt. Soc. Am. B 19, 529–536 (2002).
  40. D. Michaelis, U. Peschel, and F. Lederer, “Oscillating dark cavity solitons,” Opt. Lett. 23, 1814–1816 (1998).
  41. A dynamical simulation may be viewed at http://cnqo.phys.strath.ac.uk/movies/kerrhopf.mpg.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited