OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 753–764

Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers

Stéphane Coen, Alvin Hing Lun Chau, Rainer Leonhardt, John D. Harvey, Jonathan C. Knight, William J. Wadsworth, and Philip St. J. Russell  »View Author Affiliations

JOSA B, Vol. 19, Issue 4, pp. 753-764 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Supercontinuum generation is investigated experimentally and numerically in a highly nonlinear index-guiding photonic crystal optical fiber in a regime in which self-phase modulation of the pump wave makes a negligible contribution to spectral broadening. An ultrabroadband octave-spanning white-light continuum is generated with 60-ps pump pulses of subkilowatt peak power. The primary mechanism of spectral broadening is identified as the combined action of stimulated Raman scattering and parametric four-wave mixing. The observation of a strong anti-Stokes Raman component reveals the importance of the coupling between stimulated Raman scattering and parametric four-wave mixing in highly nonlinear photonic crystal fibers and also indicates that non-phase-matched processes contribute to the continuum. Additionally, the pump input polarization affects the generated continuum through the influence of polarization modulational instability. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate the importance of index-guiding photonic crystal fibers for the design of picosecond and nanosecond supercontinuum light sources.

© 2002 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5650) Nonlinear optics : Raman effect

Stéphane Coen, Alvin Hing Lun Chau, Rainer Leonhardt, John D. Harvey, Jonathan C. Knight, William J. Wadsworth, and Philip St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, New York, 1989).
  2. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970). [CrossRef]
  3. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970). [CrossRef]
  4. W. Yu, R. R. Alfano, C. L. Sam, and R. J. Seymour, “Spectral broadening of picosecond 1.06 μm pulse in KBr,” Opt. Commun. 14, 344–347 (1975). [CrossRef]
  5. A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998). [CrossRef]
  6. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000). [CrossRef] [PubMed]
  7. W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972). [CrossRef]
  8. A. Penzkofer, A. Laubereau, and W. Kaiser, “Stimulated short-wave radiation due to single-frequency resonances of χ(3),” Phys. Rev. Lett. 31, 863–866 (1973). [CrossRef]
  9. W. Lee Smith, P. Liu, and N. Bloembergen, “Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser,” Phys. Rev. A 15, 2396–2403 (1977). [CrossRef]
  10. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983). [CrossRef] [PubMed]
  11. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986). [CrossRef] [PubMed]
  12. J. H. Glownia, J. Misewich, and P. P. Sorokin, “Ultrafast ultraviolet pump–probe apparatus,” J. Opt. Soc. Am. B 3, 1573–1579 (1986). [CrossRef]
  13. V. François, F. A. Ilkov, and S. L. Chin, “Experimental study of the supercontinuum spectral width evolution in CO2 gas,” Opt. Commun. 99, 241–246 (1993). [CrossRef]
  14. J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, and L. Wöste, “Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses propagating in the atmosphere,” Opt. Lett. 25, 1397–1399 (2000). [CrossRef]
  15. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976). [CrossRef]
  16. P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5, 1712–1715 (1987). [CrossRef]
  17. T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett. 29, 862–864 (1993). [CrossRef]
  18. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  19. K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773–779 (2000). [CrossRef]
  20. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000). [CrossRef]
  21. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996). [CrossRef]
  22. P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, and C. V. Shank, “Generation of tunable 9 femtosecond optical pulses in the near infrared,” Appl. Phys. Lett. 54, 411–412 (1989). [CrossRef]
  23. R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, “Generation of blue–green 10 fs pulses using an excimer pumped dye amplifier,” Appl. Phys. Lett. 58, 801–803 (1991). [CrossRef]
  24. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000). [CrossRef]
  25. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]
  26. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000). [CrossRef] [PubMed]
  27. M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000). [CrossRef]
  28. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000). [CrossRef] [PubMed]
  29. S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hänsch, and J. L. Hall, “Towards the ultimate control of light: Optical frequency metrology and the phase control of femtosecond pulses,” Opt. Photonics News 11(10), 16–22 (2000). [CrossRef]
  30. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef] [PubMed]
  31. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding: errata,” Opt. Lett. 22, 484–485 (1997); erratum of Ref. 30. [CrossRef] [PubMed]
  32. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000). [CrossRef]
  33. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997). [CrossRef] [PubMed]
  34. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998). [CrossRef] [PubMed]
  35. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001). [CrossRef]
  36. R. R. Alfano, L. L. Hope, and S. L. Shapiro, “Electronic mechanism for production of self-phase modulation,” Phys. Rev. A 6, 433–438 (1972). [CrossRef]
  37. J. T. Manassah, R. R. Alfano, and M. Mustafa, “Spectral distribution of an ultrafast supercontinuum laser source,” Phys. Lett. A 107A, 305–309 (1985). [CrossRef]
  38. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Optics and Photonics Series (Academic, San Diego, Calif., 2001).
  39. P. B. Corkum and C. Rolland, “Femtosecond continua produced in gases,” IEEE J. Quantum Electron. 25, 2634–2639 (1989). [CrossRef]
  40. N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973). [CrossRef]
  41. N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun. 191, 353–362 (2001). [CrossRef]
  42. M. V. D. Vermelho, A. M. Reis, E. A. Gouveia, M. L. Lyra, and A. S. Gouveia-Neto, “Efficient frequency upconversion of 1.319 μm radiation into intense yellow light at 580 nm in pure SiO2-core monomode optical fiber,” Opt. Lett. 18, 1496–1498 (1993). [CrossRef]
  43. R. Osborne, “Near-infrared continuum generation with upconversion into the visible in SiO2 single-mode fiber,” Opt. Lett. 19, 1955–1957 (1994). [CrossRef] [PubMed]
  44. Y. Fujii, B. S. Kawasaki, K. O. Hill, and D. C. Johnson, “Sum-frequency light generation in optical fibers,” Opt. Lett. 5, 48–50 (1980). [CrossRef] [PubMed]
  45. M. Nakazawa, T. Nakashima, and S. Seikai, “Efficient multiple visible light generation in a polarization-preserving optical fiber pumped by a 1.064 μm yttrium aluminum garnet laser,” Appl. Phys. Lett. 45, 823–825 (1984). [CrossRef]
  46. C. Lin, W. A. Reed, A. D. Pearson, H.-T. Shang, and P. F. Glodis, “Designing single-mode fibres for near-IR (1.1–1.7 μm) frequency generation by phase-matched four-photon mixing in the minimum chromatic dispersion region,” Electron. Lett. 18, 87–89 (1982). [CrossRef]
  47. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000). [CrossRef]
  48. T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 790–791 (1994). [CrossRef]
  49. K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997). [CrossRef]
  50. H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34, 1336–1337 (1998). [CrossRef]
  51. J. Kim, G. A. Nowak, O. Boyraz, and M. N. Islam, “Low energy, enhanced supercontinuum generation in high nonlinearity dispersion-shifted fibers,” in Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 224–225.
  52. A. L. Gaeta, “Supercontinuum generation in microstructured fibers,” in Conference on Lasers and Electro-Optics, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 48–49.
  53. J. M. Dudley, J. D. Harvey, and R. Leonhardt, “Coherent pulse propagation in a mode-locked argon laser,” J. Opt. Soc. Am. B 10, 840–851 (1993). [CrossRef]
  54. H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17, 603–605 (1981). [CrossRef]
  55. R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984). [CrossRef]
  56. R. H. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. QE-11, 100–103 (1975). [CrossRef]
  57. R. W. Boyd, Nonlinear Optics (Academic, Boston, Mass., 1992).
  58. N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504–507 (1964). [CrossRef]
  59. Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, 1787–1805 (1965). [CrossRef]
  60. S. Coen, D. A. Wardle, and J. D. Harvey, “Measurement of the anti-Stokes growth in stimulated Raman scattering under non-phase-matched conditions,” in Nonlinear Guided Waves and Their Applications, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD7.
  61. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989). [CrossRef]
  62. R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15, 1157–1160 (1979). [CrossRef]
  63. S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995). [CrossRef] [PubMed]
  64. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000). [CrossRef]
  65. S. Trillo and S. Wabnitz, “Bloch wave theory of modulational polarization instabilities in birefringent optical fibers,” Phys. Rev. E 56, 1048–1058 (1997). [CrossRef]
  66. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989). [CrossRef]
  67. E. A. Golovchenko and A. N. Pilipetskii, “Unified analysis of four-photon mixing, modulational instability, and stimulated Raman scattering under various polarization conditions in fibers,” J. Opt. Soc. Am. B 11, 92–101 (1994). [CrossRef]
  68. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited