OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 765–771

Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping

John M. Dudley, Laurent Provino, Nicolas Grossard, Hervé Maillotte, Robert S. Windeler, Benjamin J. Eggleton, and Stéphane Coen  »View Author Affiliations


JOSA B, Vol. 19, Issue 4, pp. 765-771 (2002)
http://dx.doi.org/10.1364/JOSAB.19.000765


View Full Text Article

Acrobat PDF (266 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the generation of supercontinua in air–silica microstructured fibers by both nanosecond and femtosecond pulse excitation. In the nanosecond experiments, a 300-nm broadband visible continuum was generated in a 1.8-m length of fiber pumped at 532 nm by 0.8-ns pulses from a frequency-doubled passively Q-switched Nd:YAG microchip laser. At this wavelength, the dominant mode excited under the conditions of continuum generation is the LP11 mode, and, with nanosecond pumping, self-phase modulation is negligible and the continuum generation is dominated by the interplay of Raman and parametric effects. The spectral extent of the continuum is well explained by calculations of the parametric gain curves for four-wave mixing about the zero-dispersion wavelength of the LP11 mode. In the femtosecond experiments, an 800-nm broadband visible and near-infrared continuum has been generated in a 1-m length of fiber pumped at 780 nm by 100-fs pulses from a Kerr-lens model-locked Ti:sapphire laser. At this wavelength, excitation and continuum generation occur in the LP01 mode, and the spectral width of the observed continuum is shown to be consistent with the phase-matching bandwidth for parametric processes calculated for this fiber mode. In addition, numerical simulations based on an extended nonlinear Schrödinger equation were used to model supercontinuum generation in the femtosecond regime, with the simulation results reproducing the major features of the experimentally observed spectrum.

© 2002 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.7140) Ultrafast optics : Ultrafast processes in fibers

Citation
John M. Dudley, Laurent Provino, Nicolas Grossard, Hervé Maillotte, Robert S. Windeler, Benjamin J. Eggleton, and Stéphane Coen, "Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-4-765


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. See, for example, R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, New York, 1989), and references therein.
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
  3. J. K. Ranka and R. S. Windeler, “Nonlinear interactions in air–silica microstructure optical fibers,” Opt. Photonics News, 11, 2000, pp. 20–25.
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996); errata 22, 484–485 (1997).
  5. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
  6. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).
  7. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
  8. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. A 17, 1333–1340 (2000).
  9. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. Mater. Devices Syst. 6, 181–191 (2000).
  10. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
  11. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
  12. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
  13. S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hänsch, and J. L. Hall, “Towards the ultimate control of light: optical frequency metrology and the phase control of femtosecond pulses,” Opt. Photonics News, November 2000, pp. 16–22.
  14. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
  15. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
  16. T. P. M. Man, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Fabrication of indefinitely long tapered fibers for supercontinuum generation,” in Nonlinear Guided Waves and Their Applications (NLGW 2001), 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper WB4, pp. 438–440.
  17. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Single mode white light supercontinuum with 60 ps pump pulses in a photonic crystal fiber,” in Nonlinear Guided Waves and Their Applications (NLGW 2001), 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper TuC6, pp. 405–407.
  18. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
  19. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560 (2001).
  20. C. Lin and R. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
  21. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure fibers,” Opt. Lett. 25, 796–798 (2000).
  22. R. H. Stolen and W. N. Leibolt, “Optical fiber modes using stimulated four photon mixing,” Appl. Opt. 15, 239–243 (1976).
  23. L. Provino, J. M. Dudley, H. Maillotte, R. S. Windeler, and B. J. Eggleton, “Compact visible continuum source based on a microchip laser pumped microstructured fiber,” in Nonlinear Guided Waves and Their Applications (NLGW 2001), 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper WB3, pp. 435–437.
  24. A similar interpretation that explains supercontinuum generation in ASMF in the picosecond regime is described in Refs. 17 and 18.
  25. R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
  26. R. R. Alfano, P. L. Baldeck, F. Raccah, and P. P. Ho, “Cross phase modulation measured in optical fibers,” Appl. Opt. 26, 3491–3492 (1987).
  27. P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. LT-5, 1712–1715 (1987).
  28. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).
  29. A. L. Gaeta, “Supercontinuum generation in microstructured fibers,” in Conference on Lasers and Electro-Optics (CLEO 2001), 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper CMK 3, pp. 48–49.
  30. See, for example, Fig. 5(b) of Ref. 3, Fig. 4 of Ref. 13, and Fig. 6 of Ref. 15.
  31. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
  32. E. A. Golovchenko and A. N. Pilipetskii, “Unified analysis of four photon mixing, modulational instability and stimulated Raman scattering under various polarization conditions in fibers,” J. Opt. Soc. Am. B 11, 92–101 (1994).
  33. S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633–1641 (1991).
  34. F. Matera, A. Mecozzi, M. Romagnoli, and M. Settembre, “Sideband instability induced by periodic power variation in long-distance fiber links,” Opt. Lett. 18, 1499–1501 (1993).
  35. W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett. 36, 53–55 (2000).
  36. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
  37. M. W. Kimmel, R. Trebino, J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Measuring the intensity and phase of ultrabroadband continuum,” in Conference on Lasers and Electro-Optics (CLEO 2000), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C. 2000), Paper CFL7, pp. 622–623.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited