OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 772–781

Nonlinear guided waves and spatial solitons in a periodic layered medium

Andrey A. Sukhorukov and Yuri S. Kivshar  »View Author Affiliations


JOSA B, Vol. 19, Issue 4, pp. 772-781 (2002)
http://dx.doi.org/10.1364/JOSAB.19.000772


View Full Text Article

Enhanced HTML    Acrobat PDF (806 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an overview of the properties of nonlinear guided waves and (bright and dark) spatial optical solitons in a periodic medium created by linear and nonlinear waveguides. First we consider a single layer with a cubic nonlinear response (a nonlinear slab waveguide) embedded in a periodic layered linear medium and describe nonlinear localized modes (guided waves and Bragg-like localized gap modes) and their stability. Then we study modulational instability as well as the existence and stability of discrete spatial solitons in a periodic array of identical nonlinear layers, a one-dimensional model of nonlinear photonic crystals. We emphasize both similarities to and differences from the models described by the discrete nonlinear Schrödinger equation, which is derived in the tight-binding approximation, and the coupled-mode theory, which is valid for shallow periodic modulations.

© 2002 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(190.5940) Nonlinear optics : Self-action effects

Citation
Andrey A. Sukhorukov and Yuri S. Kivshar, "Nonlinear guided waves and spatial solitons in a periodic layered medium," J. Opt. Soc. Am. B 19, 772-781 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-4-772


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 13, 794–796 (1988). [CrossRef] [PubMed]
  2. Yu. S. Kivshar, “Self-localization in arrays of defocusing wave-guides,” Opt. Lett. 18, 1147–1149 (1993). [CrossRef]
  3. W. Krolikowski and Yu. S. Kivshar, “Soliton-based optical switching in waveguide arrays,” J. Opt. Soc. Am. B 13, 876–887 (1996). [CrossRef]
  4. A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, “Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays,” Phys. Rev. E 53, 1172–1189 (1996). [CrossRef]
  5. S. Darmanyan, A. Kobyakov, E. Schmidt, and F. Lederer, “Strongly localized vectorial modes in nonlinear waveguide arrays,” Phys. Rev. E 57, 3520–3530 (1998). [CrossRef]
  6. F. Lederer, S. Darmanyan, and A. Kobyakov, “Discrete solitons,” in Spatial Optical Solitons, S. Trillo and W. E. Torruellas, eds. (Springer-Verlag, New York, 2001), pp. 269–292.
  7. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998). [CrossRef]
  8. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000). [CrossRef] [PubMed]
  9. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83, 2726–2729 (1999). [CrossRef]
  10. R. Morandotti, H. S. Eisenberg, Y. Silberberg, M. Sorel, and J. S. Aitchison, “Self-focusing and defocusing in waveguide arrays,” Phys. Rev. Lett. 86, 3296–3299 (2001). [CrossRef] [PubMed]
  11. Yu. I. Voloshchenko, Yu. N. Ryzhov, and V. E. Sotin, “Stationary waves in non-linear, periodically modulated media with higher group retardation,” Zh. Tekh. Fiz. 51, 902–907 (1981) [Tech. Phys. 26, 541–544 (1981)].
  12. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical-response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987). [CrossRef] [PubMed]
  13. D. N. Christodoulides and R. I. Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett. 62, 1746–1749 (1989). [CrossRef] [PubMed]
  14. C. M. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1994), Vol. XXXIII, pp. 203–260.
  15. A. Trombettoni and A. Smerzi, “Discrete solitons and breathers with dilute Bose–Einstein condensates,” Phys. Rev. Lett. 86, 2353–2356 (2001). [CrossRef] [PubMed]
  16. S. F. Mingaleev and Yu. S. Kivshar, “Self-trapping and stable localized modes in nonlinear photonic crystals,” Phys. Rev. Lett. 86, 5474–5477 (2001). [CrossRef] [PubMed]
  17. A. A. Sukhorukov and Yu. S. Kivshar, “Spatial optical solitons in nonlinear photonic crystals,” August 6, 2001, arXiv. org. e-print archive; Phys. Rev. E (to be published).
  18. I. V. Gerasimchuk and A. S. Kovalev, “Localization of nonlinear waves in layered media,” Fiz. Nizk. Temp. 26, 799–809 (2000) [Low Temp. Phys. 26, 586–593 (2000)]. [CrossRef]
  19. P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427–430 (1976). [CrossRef]
  20. A. Y. Cho, A. Yariv, and P. Yeh, “Observation of confined propagation in Bragg waveguides,” Appl. Phys. Lett. 30, 471–472 (1977). [CrossRef]
  21. C. Wachter, F. Lederer, L. Leine, U. Trutschel, and M. Mann, “Nonlinear Bragg reflection wave-guide,” J. Appl. Phys. 71, 3688–3692 (1992). [CrossRef]
  22. H. Grebel and W. Zhong, “Holographic interconnects—transverse Bragg wave-guides,” Opt. Lett. 18, 1123–1125 (1993). [CrossRef]
  23. R. F. Nabiev, P. Yeh, and D. Botez, “Spatial gap solitons in periodic nonlinear structures,” Opt. Lett. 18, 1612–1614 (1993). [CrossRef] [PubMed]
  24. M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear-optical diode,” Appl. Phys. Lett. 66, 2324–2326 (1995). [CrossRef]
  25. S. Lan, S. Nishikawa, and O. Wada, “Leveraging deep photonic band gaps in photonic crystal impurity bands,” Appl. Phys. Lett. 78, 2101–2103 (2001). [CrossRef]
  26. B. Luther-Davies and G. I. Stegeman, “Materials for spatial solitons,” in Spatial Optical Solitons, S. Trillo and W. E. Torruellas, eds. (Springer-Verlag, New York, 2001), pp. 19–35.
  27. E. Lidorikis, K. Busch, Q. M. Li, C. T. Chan, and C. M. Soukoulis, “Optical nonlinear response of a single nonlinear dielectric layer sandwiched between two linear dielectric structures,” Phys. Rev. B 56, 15090–15099 (1997). [CrossRef]
  28. M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1959).
  29. A. A. Sukhorukov, Yu. S. Kivshar, O. Bang, and C. M. Soukoulis, “Parametric localized modes in quadratic nonlinear photonic structures,” Phys. Rev. E 63, 016615–9 (2001). [CrossRef]
  30. E. Lidorikis, Q. M. Li, and C. M. Soukoulis, “Wave propagation in nonlinear multilayer structures,” Phys. Rev. B 54, 10249–10252 (1996). [CrossRef]
  31. R. L. Pego and M. I. Weinstein, “Evans’ function, Melnikov’s integral, and solitary wave instabilities,” in Differential Equations with Applications to Mathematical Physics, Vol. 192 of Mathematics in Science and Engineering, W. F. Ames, E. M. Harrell II, and J. V. Herod, eds. (Academic, Boston, Mass., 1993), pp. 273–286.
  32. N. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in the medium with nonlinearity saturation,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16, 1020–1028 (1973) [Radiophys. Quantum Electron. 16, 783–789 (1973)]. [CrossRef]
  33. Yu. S. Kivshar and A. A. Sukhorukov, “Stability of spatial optical solitons,” in Spatial Optical Solitons, S. Trillo and W. E. Torruellas, eds. (Springer-Verlag, New York, 2001), pp. 211–245.
  34. U. Peschel, R. Morandotti, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Nonlinearly induced escape from a defect state in waveguide arrays,” Appl. Phys. Lett. 75, 1348–1350 (1999). [CrossRef]
  35. J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, and K. Promislow, “Stability of repulsive Bose–Einstein condensates in a periodic potential,” Phys. Rev. E 63, 036612–11 (2001). [CrossRef]
  36. J. C. Bronski, L. D. Carr, R. Carretero-Gonzalez, B. Deconinck, J. N. Kutz, and K. Promislow, “Stability of attractive Bose–Einstein condensates in a periodic potential,” Phys. Rev. E 64, 056615–9 (2001). [CrossRef]
  37. B. Wu and Q. Niu, “Landau and dynamical instabilities of the superflow of Bose–Einstein condensates in optical lattices,” Phys. Rev. A 64, 061603–4 (2001). [CrossRef]
  38. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1992).
  39. C. M. de Sterke, “Theory of modulational instability in fiber Bragg gratings,” J. Opt. Soc. Am. B 15, 2660–2667 (1998). [CrossRef]
  40. Yu. S. Kivshar and M. Peyrard, “Modulational instabilities in discrete lattices,” Phys. Rev. A 46, 3198–3205 (1992). [CrossRef] [PubMed]
  41. Yu. S. Kivshar and D. K. Campbell, “Peierls–Nabarro potential barrier for highly localized nonlinear modes,” Phys. Rev. E 48, 3077–3081 (1993). [CrossRef]
  42. Yu. S. Kivshar, A. R. Champneys, D. Cai, and A. R. Bishop, “Multiple states of intrinsic localized modes,” Phys. Rev. B 58, 5423–5428 (1998). [CrossRef]
  43. S. Darmanyan, A. Kobyakov, and F. Lederer, “Stability of strongly localized excitations in discrete media with cubic nonlinearity,” Zh. Eksp. Teor. Fiz. 113, 1253–1260 (1998) [JETP 86, 682–686 (1998)]. [CrossRef]
  44. P. G. Kevrekidis, A. R. Bishop, and K. O. Rasmussen, “Twisted localized modes,” Phys. Rev. E 63, 036603–6 (2001). [CrossRef]
  45. T. Kapitula, P. G. Kevrekidis, and B. A. Malomed, “Stability of multiple pulses in discrete systems,” Phys. Rev. E 63, 036604–8 (2001). [CrossRef]
  46. Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998). [CrossRef]
  47. Yu. S. Kivshar, W. Krolikowski, and O. A. Chubykalo, “Dark solitons in discrete lattices,” Phys. Rev. E 50, 5020–5032 (1994). [CrossRef]
  48. F. Barra, P. Gaspard, and S. Rica, “Nonlinear Schrödinger flow in a periodic potential,” Phys. Rev. E 61, 5852–5863 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited