OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 782–791

Theoretical and experimental study of Bragg modulational instability in a dynamic fiber grating

Stéphane Pitois, Marc Haelterman, and Guy Millot  »View Author Affiliations

JOSA B, Vol. 19, Issue 4, pp. 782-791 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (243 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study theoretically and experimentally nonlinear wave propagation in dynamic optical Bragg gratings. Such gratings are obtained through cross-phase modulation with the beating wave that results from two intense laser beams of different frequencies propagating in a highly birefringent fiber. We show that wave propagation in these gratings obeys the standard coupled-mode equations of static nonlinear Bragg gratings, which makes our study relevant to a wide class of problems related to nonlinear wave propagation in periodic media. The main advantage of the dynamic Bragg gratings is that they make it possible to study experimentally nonlinear wave dynamics close to the bandgap where static gratings cannot be investigated because of their high reflectivity. We illustrate this advantage through the study of Bragg modulational instability.

© 2002 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4370) Nonlinear optics : Nonlinear optics, fibers

Stéphane Pitois, Marc Haelterman, and Guy Millot, "Theoretical and experimental study of Bragg modulational instability in a dynamic fiber grating," J. Opt. Soc. Am. B 19, 782-791 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam 1994), Vol. XXXIII, Chap. III, pp. 203–260.
  2. U. Mohideen, R. E. Slusher, V. Mizrahi, T. Erdogan, M. Kuwata-Gonokami, P. J. Lemaire, J. E. Sipe, C. M. de Sterke, and N. G. R. Broderick, “Gap soliton propagation in optical fiber gratings,” Opt. Lett. 20, 1674–1676 (1995). [CrossRef] [PubMed]
  3. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996). [CrossRef] [PubMed]
  4. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997). [CrossRef]
  5. B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instability and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998). [CrossRef]
  6. T. G. Brown and B. J. Eggleton, “Bragg solitons and optical switching in nonlinear periodic structures: an historical perspective,” Opt. Express 3, 385–388 (1998), http://www.opticsexpress.org. [CrossRef] [PubMed]
  7. D. Taverner, N. G. R. Broderick, D. J. Richardson, R. I. Laming, and M. Ibsen, “Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 328–330 (1998). [CrossRef]
  8. D. Taverner, N. G. R. Broderick, D. J. Richardson, M. Ibsen, and R. I. Laming, “All-optical AND gate based on coupled gap–soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 259–261 (1998). [CrossRef]
  9. N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992). [CrossRef]
  10. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989). [CrossRef] [PubMed]
  11. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Bragg solitons in the nonlinear Schrödinger limit: experiment and theory,” J. Opt. Soc. Am. B 16, 587–599 (1999). [CrossRef]
  12. H. G. Winful and V. Perlin, “Raman gap solitons,” Phys. Rev. Lett. 84, 3586–3589 (2000). [CrossRef] [PubMed]
  13. S. Wabnitz, “Forward mode coupling in periodic nonlinear-optical fibers: modal dispersion cancellation and resonance solitons,” Opt. Lett. 14, 1071–1073 (1989). [CrossRef] [PubMed]
  14. C. M. de Sterke, “Theory of modulational instability in fiber Bragg gratings,” J. Opt. Soc. Am. B 15, 2660–2667 (1998). [CrossRef]
  15. S. Pitois, M. Haelterman, and G. Millot, “Bragg modulational instability induced by a dynamic grating in an optical fiber,” Opt. Lett. 26, 780–782 (2001). [CrossRef]
  16. P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990). [CrossRef]
  17. J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990). [CrossRef] [PubMed]
  18. E. Seve, P. T. Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996). [CrossRef] [PubMed]
  19. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited