OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 802–811

Self-induced thermal effects and modal competition in continuous-wave optical parametric oscillators

R. O. Moore, G. Biondini, and W. L. Kath  »View Author Affiliations


JOSA B, Vol. 19, Issue 4, pp. 802-811 (2002)
http://dx.doi.org/10.1364/JOSAB.19.000802


View Full Text Article

Acrobat PDF (382 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a model of quasi-phase-matched continuous-wave optical parametric oscillators that accounts for self-induced heating of the photorefractive crystal and modal interaction through pump depletion. The model allows the temperature and therefore the refractive index of the nonlinear medium to vary in the radial and longitudinal dimensions as a result of local absorption of the optical power. We consider the effect of this nonuniform index on single-mode and multimode operation. For a single signal–idler pair we observe thermal lensing, bulk tuning, and modal distortion. For multiple pairs of signal and idler we demonstrate and discuss other phenomena, including spatially dependent modal competition.

© 2002 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.4870) Nonlinear optics : Photothermal effects
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

Citation
R. O. Moore, G. Biondini, and W. L. Kath, "Self-induced thermal effects and modal competition in continuous-wave optical parametric oscillators," J. Opt. Soc. Am. B 19, 802-811 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-4-802


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. A. Richman, K. W. Aniolek, T. J. Kulp, and S. E. Bisson, “Continuously tunable, single-longitudinal-mode, pulsed mid-infrared optical parametric oscillator based on periodically poled lithium niobate,” J. Opt. Soc. Am. B 17, 1233–1239 (2000).
  2. F. K. Hopkins, “Military laser applications: providing focus to nonlinear optics R & D,” Opt. Photon. News, February, 1998, pp. 32–38.
  3. Y. X. Fan and R. L. Byer, “Progress in optical parametric oscillators,” in New Lasers for Analytical and Industrial Chemistry, A. Bernhardt, ed., Proc. SPIE 461, 27–32 (1984).
  4. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
  5. N. O’Brien, M. Missey, P. Powers, V. Dominic, and K. L. Schepler, “Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett. 24, 1750–1752 (1999).
  6. P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
  7. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52–54 (1995).
  8. V. Pruneri, J. Webjorn, P. S. Russell, and D. C. Hanna, “532 nm pumped optical parametric oscillator in bulk periodically poled lithium-niobate,” Appl. Phys. Lett. 67, 2126–2128 (1995).
  9. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 21, 713–715 (1996).
  10. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1997).
  11. W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23, 207–209 (1998).
  12. D. D. Lowenthal, “CW periodically poled LiNbO3 optical parametric oscillator model with strong idler absorption,” IEEE J. Quantum Electron. 34, 1356–1366 (1998).
  13. M. A. Dreger and J. K. McIver, “Second-harmonic generation in a nonlinear, anisotropic medium with diffraction and depletion,” J. Opt. Soc. Am. B 7, 776–784 (1990).
  14. S. Severini, C. Sibilia, and M. Bertolotti, “Transverse effects in a parametric down-conversion process in three dimensions,” J. Opt. Soc. Am. B 17, 580–585 (2000).
  15. P. Kerkoc, S. Horinouchi, K. Sasaki, Y. Nagae, and D. Pugh, “Thermal effects on second-harmonic generation in biaxial molecular crystals,” J. Opt. Soc. Am. B 16, 1686–1691 (1999).
  16. G. Arisholm, “Advanced numerical simulation models for second-order nonlinear interactions,” in Laser Optics ’98: Fundamental Problems of Laser Optics, N. N. Rosanov, ed., Proc. SPIE 3685, 86–97 (1999).
  17. S. E. Bisson, Sandia National Laboratories, 7011 East Ave., MS 9051, Livermore, Calif. (personal communication, 2000).
  18. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Progress in quasi-phasematched optical parametric oscillators using periodically poled LiNbO3,” in Nonlinear Frequency Generation and Conversion, 2700, 216–226 (1996).
  19. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
  20. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  21. A. Fix and R. Wallenstein, “Spectral properties of pulsed nanosecond optical parametric oscillators: experimental investigation and numerical analysis,” J. Opt. Soc. Am. B 13, 2484–2497 (1996).
  22. A. V. Smith, W. J. Alford, T. D. Raymond, and M. S. Bowers, “Comparison of a numerical-model with measured performance of a seeded, nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2267 (1995).
  23. G. Arisholm, “General numerical methods for simulating second-order nonlinear interactions in birefringent media,” J. Opt. Soc. Am. B 14, 2543–2549 (1997).
  24. M. D. Feit and J. J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978).
  25. L. Yu, M. C. Huang, M. Z. Chen, W. Z. Chen, W. D. Huang, and Z. Z. Zhu, “Quasi-discrete Hankel transform,” Opt. Lett. 23, 409–411 (1998).
  26. R. O. Moore, “A study of optical devices with parametric gain,” Ph.D. dissertation (Northwestern University, Evanston, Ill., 2001).
  27. A. V. Smith, R. J. Gehr, and M. S. Bowers, “Numerical models of broad-bandwidth nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B 16, 609–619 (1999).
  28. Almaz Optics, Inc., “Lithium niobate, LiNbO3,” http://www.almazoptics.com/homepage/LiNbO3.htm.
  29. S. Longhi, “Spatio-temporal instabilities and threshold condition in a broad-area optical parametric oscillator,” Opt. Commun. 153, 90–94 (1998).
  30. C. Fabre, P. F. Cohadon, and C. Schwob, “CW optical parametric oscillators: single mode operation and frequency tuning properties,” Quantum Semiclassic. Opt. 9, 165–172 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited