OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 839–848

Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides with simultaneous strong pump depletion and group-velocity walk-off

Zheng Zheng, Andrew M. Weiner, Krishnan R. Parameswaran, Ming-Hsien Chou, and Martin M. Fejer  »View Author Affiliations

JOSA B, Vol. 19, Issue 4, pp. 839-848 (2002)

View Full Text Article

Acrobat PDF (275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report studies of second-harmonic generation (SHG) of femtosecond pulses in long periodically poled lithium niobate waveguides under large conversion conditions. Strong saturation of the SHG efficiency was observed, accompanied by spectral and temporal distortion of the pump pulse. Our simulation studies suggest that the pulse distortions may be caused by the interaction of the phase-matched SHG process and an additional cascaded χ(2) process or processes, leading to a large nonlinear phase modulation. Such additional cascaded χ(2) processes could be caused by the existence of multiple transverse modes in the nonlinear waveguide. These phenomena, which to our knowledge have not been reported previously, may have a significant effect on studies of high-power short-pulse parametric process in waveguide devices and on the design of novel nonlinear optical waveguide devices for such applications.

© 2002 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.4320) Optical devices : Nonlinear optical devices

Zheng Zheng, Andrew M. Weiner, Krishnan R. Parameswaran, Ming-Hsien Chou, and Martin M. Fejer, "Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides with simultaneous strong pump depletion and group-velocity walk-off," J. Opt. Soc. Am. B 19, 839-848 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. H. Glenn, “Second-harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron. QE-5, 284–290 (1969).
  2. S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and space-time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).
  3. A. M. Weiner, A. M. Kan’an, and D. E. Leaird, “High-efficiency blue generation by frequency doubling of femtosecond pulses in a thick nonlinear crystal,” Opt. Lett. 23, 1441–1443 (1998).
  4. Z. Zheng, A. M. Weiner, K. R. Parameswaran, M. H. Chou, and M. M. Fejer, “Low power spectral phase correlator using periodically poled LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 13, 376–378 (2001).
  5. Z. Zheng and A. M. Weiner, “Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals,” Opt. Lett. 25, 984–986 (2000).
  6. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2115 (1995).
  7. M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Harter, “Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate,” Opt. Lett. 22, 13–15 (1997).
  8. G. W. Ross, M. Pollnau, P. G. Smith, W. A. Clarkson, P. E. Britton, and D. C. Hanna, “Generation of high-power blue light in periodically poled LiNbO3,” Opt. Lett. 23, 171–173 (1998).
  9. M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
  10. G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and M. M. Fejer, “Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings,” Opt. Lett. 23, 864–866 (1998).
  11. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17, 304–318 (2000).
  12. M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
  13. K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, “High-efficiency LiNbO3 waveguide second-harmonic generation devices with ferroelectric-domain-inverted gratings fabricated by applying voltage,” J. Lightwave Technol. 14, 462–468 (1996).
  14. Y. Li, D. Guzun, and M. Xiao, “Quantum-noise measurements in high-efficiency single-pass second-harmonic generation with femtosecond pulses,” Opt. Lett. 24, 987–989 (1999).
  15. J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
  16. M. H. Chou, “Optical frequency mixers using three-wave mixing for optical fiber communications,” Ph.D. Dissertation (Stanford University, Stanford, Calif., 1999).
  17. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, “Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixings in periodically poled crystals: application to a two-step 1.19–10.71-μm frequency bridge,” Opt. Lett. 22, 1211–1213 (1997).
  18. R. Schiek, Y. Baek, and G. I. Stegeman, “Second-harmonic generation and cascaded nonlinearity in titanium-indiffused lithium niobate channel waveguides,” J. Opt. Soc. Am. B 15, 2255–2268 (1998).
  19. L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
  20. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
  21. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 1997).
  22. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
  23. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, 1995).
  24. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. II Arbitrary amplitudes,” J. Opt. Soc. Am. B 5, 392–402 (1988).
  25. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
  26. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
  27. C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
  28. X. Liu, L. J. Qian, and F. Wise, “Effect of local phase-mismatch on frequency doubling of high-power femtosecond laser pulses under quasi-phase-matched conditions,” Opt. Commun. 164, 69–75 (1999).
  29. C. R. Menyuk, R. Schiek, and L. Torner, “Solitary waves due to χ(2)(2) cascading,” J. Opt. Soc. Am. B 11, 2434–2443 (1994).
  30. L. Torner, D. Mazilu, and D. Mihalache, “Walking solitons in quadratic nonlinear media,” Phys. Rev. Lett. 77, 2455–2458 (1996).
  31. T. Iizuka and Y. S. Kivshar, “Optical gap solitons in nonresonant quadratic media,” Phys. Rev. E 59, 7148–7151 (1999).
  32. S. Darmanyan, L. Crasovan, and F. Lederer, “Double-hump solitary waves in quadratically nonlinear media with loss and gain,” Phys. Rev. E 61, 3267–3269 (2000).
  33. K. Koynov and S. Saltiel, “Nonlinear phase shift via multistep χ(2) cascading,” Opt. Commun. 152, 96–100 (1998).
  34. S. Saltiel, K. Koynov, Y. Deyanova, and Y. S. Kivshar, “Nonlinear phase shift resulting from two-color multistep cascading,” J. Opt. Soc. Am. B 17, 959–965 (2000).
  35. S. Saltiel and Y. Deyanova, “Polarization switching as a result of cascading of two simultaneously phase matched quadratic processes,” Opt. Lett. 24, 1296–1298 (1999).
  36. C. N. Ironside, J. S. Aitchison, and J. M. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron. 29, 2650–2654 (1993).
  37. X. Liu, L. J. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2)(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
  38. L. Becouarn, E. Lallier, M. Brevignon, and J. Lehoux, “Cascaded second-harmonic and sum-frequency generation of a CO2 laser by use of a single quasi-phase-matched GaAs crystal,” Opt. Lett. 23, 1508–1510 (1998).
  39. A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited