OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 852–859

Effective lensing effects in parametric frequency conversion

C. Conti, S. Trillo, P. Di Trapani, J. Kilius, A. Bramati, S. Minardi, W. Chinaglia, and G. Valiulis  »View Author Affiliations

JOSA B, Vol. 19, Issue 4, pp. 852-859 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (183 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that, in the high wave-vector-mismatch (cascading) limit, the well-known paraxial description of parametric frequency conversion in quadratic media entails effective lensing effects, which can have a self-focusing or a self-defocusing nature, critically depending on the mismatch sign, the selected wave, and the launching condition (second-harmonic generation or downconversion). Numerical and experimental evidence of this behavior is reported.

© 2002 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

C. Conti, S. Trillo, P. Di Trapani, J. Kilius, A. Bramati, S. Minardi, W. Chinaglia, and G. Valiulis, "Effective lensing effects in parametric frequency conversion," J. Opt. Soc. Am. B 19, 852-859 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964). [CrossRef]
  2. L. Bergé, “Wave collapse in physics: principles and applications to light and plasma waves,” Phys. Rep. 303, 259–372 (1998). [CrossRef]
  3. S. Trillo and W. E. Torruellas, eds., Spatial Solitons (Springer-Verlag, Berlin, 2001).
  4. M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992). [CrossRef] [PubMed]
  5. M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied fields,” Phys. Rev. Lett. 73, 3211–3214 (1994). [CrossRef] [PubMed]
  6. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996). [CrossRef]
  7. C. Etrich, F. Lederer, B. A. Malomed, T. Peschel, and U. Peschel, “Optical solitons in media with a quadratic nonlinearity,” in Progress in Optics, E. Wolf, ed. (Pergamon, London, 2000).
  8. W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995). [CrossRef] [PubMed]
  9. R. Schiek, Y. Baek, and G. I. Stegeman, “One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in planar waveguides,” Phys. Rev. E 53, 1138–1141 (1996). [CrossRef]
  10. Yu. N. Karamzin and A. P. Sukhorukov, “Nonlinear interaction of diffracted light beams in a medium with quadratic nonlinearity: mutual focusing of beams and limitation on the efficiency of optical frequency converters,” JETP Lett. 20, 339–342 (1974).
  11. R. A. Fuerst, M. T. G. Canva, D. M. Baboiu, and G. I. Stegeman, “Properties of type II quadratic solitons excited by imbalanced fundamental waves,” Opt. Lett. 22, 1748–1750 (1997). [CrossRef]
  12. P. Di Trapani, G. Valiulis, W. Chinaglia, and A. Andreoni, “Two-dimensional spatial solitary waves from traveling-wave parametric amplification of the quantum noise,” Phys. Rev. Lett. 80, 265–268 (1998). [CrossRef]
  13. M. T. G. Canva, R. A. Fuerst, D. Baboiu, G. I. Stegeman, and G. Assanto, “Quadratic spatial soliton generation by seeded downconversion of a strong harmonic pump beam,” Opt. Lett. 22, 1683–1685 (1997); errata, 26, 105 (2001). [CrossRef]
  14. R. A. Fuerst, M. T. G. Canva, G. I. Stegeman, G. Leo, and G. Assanto, “Robust generation, properties and potential applications of quadratic spatial solitons generated by optical parametric amplification,” Opt. Quantum Electron. 30, 907–921 (1998). [CrossRef]
  15. R. A. Fuerst, D. M. Baboiu, B. Lawrence, W. E. Torruellas, G. I. Stegeman, S. Trillo, and S. Wabnitz, “Spatial modulational instability and multisoliton-like generation in a quadratically nonlinear optical medium,” Phys. Rev. Lett. 78, 2756–2759 (1997). [CrossRef]
  16. R. Schiek, H. Fang, R. Malendevich, and G. I. Stegeman, “Measurement of modulational instability gain of second-order nonlinear optical eigenmodes in a one-dimensional system,” Phys. Rev. Lett. 86, 4528–4531 (2001). [CrossRef] [PubMed]
  17. P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81, 570–573 (1998). [CrossRef]
  18. X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett. 82, 4631–4634 (1999). [CrossRef]
  19. X. Liu, K. Beckwitt, and F. W. Wise, “Noncollinear generation of optical spatiotemporal solitons and application to ultrafast logic,” Phys. Rev. E 61, R4722–R4725 (2000). [CrossRef]
  20. B. Bourliaguet, V. Couderc, A. Barthelemy, G. W. Ross, P. G. R. Smith, D. C. Hanna, and C. De Angelis, “Observation of quadratic spatial solitons in periodically poled lithium niobate,” Opt. Lett. 24, 1410–1412 (1999). [CrossRef]
  21. T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993). [CrossRef] [PubMed]
  22. P. Di Trapani, A. Berzanskis, S. Minardi, S. Sapone, and W. Chinaglia, “Observation of optical vortices and J0 Bessel-like beams in quantum-noise parametric amplification,” Phys. Rev. Lett. 81, 5133–5136 (1998). [CrossRef]
  23. D. V. Petrov and L. Torner, “Observation of topological charge pair nucleation in parametric wave mixing,” Phys. Rev. E 84, 7903–7907 (1998). [CrossRef]
  24. P. Di Trapani, W. Chinaglia, S. Minardi, A. Piskarskas, and G. Valiulis, “Observation of quadratic optical vortex solitons,” Phys. Rev. Lett. 84, 3843–3846 (2000). [CrossRef] [PubMed]
  25. M. Vaupel, A. Maitre, and C. Fabre, “Observation of pattern formation in optical parametric oscillators,” Phys. Rev. Lett. 83, 5278–5281 (1999). [CrossRef]
  26. D. E. Pelinovsky, A. V. Buryak, and Yu. S. Kivshar, “Instability of solitons governed by quadratic nonlinearity,” Phys. Rev. Lett. 75, 591–594 (1995). [CrossRef] [PubMed]
  27. A. V. Buryak, Yu. S. Kivshar, and S. Trillo, “Stability of three-wave parametric solitons in diffractive media,” Phys. Rev. Lett. 77, 5210–5213 (1996). [CrossRef] [PubMed]
  28. A. V. Buryak, Y. S. Kivshar, and S. Trillo, “Parametric spatial solitary waves due to type II second harmonic generation,” J. Opt. Soc. Am. B 14, 3110–3118 (1997). [CrossRef]
  29. A. V. Buryak and Yu. S. Kivshar, “Multistability of three-wave parametric self-trapping,” Phys. Rev. Lett. 78, 3286–3289 (1997). [CrossRef]
  30. W. J. Firth and D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79, 2450–2453 (1997). [CrossRef]
  31. L. A. Ostroskii, “Self-action of light in crystals,” Pis'ma Zh. Eksp. Teor. Fiz. 5, 331–334 (1967).
  32. Ch. Bosshard, R. Speiter, M. Zgonick, and P. Günter, “Kerr nonlinearity via cascaded optical rectification and the linear electro-optics effect,” Phys. Rev. Lett. 74, 2816–2819 (1995). [CrossRef] [PubMed]
  33. M. J. Werner and P. D. Drummond, “Strongly coupled nonlinear parametric solitary waves,” Opt. Lett. 19, 613–615 (1994). [CrossRef] [PubMed]
  34. A. G. Kalocsai and J. W. Haus, “Nonlinear Schrödinger equation for optical media with quadratic nonlinearity,” Phys. Rev. A 49, 574–585 (1994). [CrossRef] [PubMed]
  35. C. R. Menyuk, R. Schiek, and L. Torner, “Solitary waves due to χ(2)(2) cascading,” J. Opt. Soc. Am. B 11, 2434–2443 (1994). [CrossRef]
  36. A. H. Nayfeh, Introduction to Perturbation Techniques (Wiley, New York, 1993).
  37. A. C. Newell and J. V. Moloney, Nonlinear Optics (Addison-Wesley, Redwood City, Calif., 1992).
  38. A. G. Kalocsai and J. W. Haus, “Asymptotic wave-wave processes beyond cascading in quadratic nonlinear optical materials,” Phys. Rev. E 52, 3166–3183 (1995). [CrossRef]
  39. C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997). [CrossRef]
  40. P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, S. Trillo, C. Conti, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities in self-trapping due to parametric frequency conversion,” Phys. Rev. Lett. 87, 183902 (2001). [CrossRef]
  41. L. Torner, D. Mihalache, D. Mazilu, E. M. Wright, W. E. Torruellas, and G. I. Stegeman, “Stationary trapping of light beams in bulk second-order nonlinear media,” Opt. Commun. 121, 149–155 (1995). [CrossRef]
  42. A. V. Buryak, Yu. S. Kivshar, and V. V. Steblina, “Self-trapping of light beams and parametric solitons in diffractive quadratic media,” Phys. Rev. A 52, 1670–1674 (1996). [CrossRef]
  43. G. Cappellini, S. Trillo, S. Wabnitz, and R. Chisari, “Two wave mixing in a quadratic nonlinear medium: bifurcations, spatial instabilities, and chaos,” Opt. Lett. 17, 637–639 (1992). [CrossRef]
  44. T. A. B. Kennedy and S. Trillo, “Squeezing of cw light in a single-mode dispersive χ(2) medium,” Phys. Rev. A 54, 4396–4407 (1996). [CrossRef] [PubMed]
  45. D. C. Hutchings, J. S. Aitchison, and C. N. Ironside, “All-optical switching based on nondegenerate phase shifts from a cascaded second-order nonlinearity,” Opt. Lett. 18, 793–795 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited