OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 902–910

Characterization of AlGaAs/AlAs waveguides for optical parametric interactions

Giuseppe Leo, Gaetano Assanto, Olivier Durand, and Vincent Berger  »View Author Affiliations

JOSA B, Vol. 19, Issue 4, pp. 902-910 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (632 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the use of several complementary techniques for the optical characterization of semiconductor waveguides for parametric generation. Grating-assisted distributed coupling, x-ray reflectometry, and surface-emitting second-harmonic generation allowed us to evaluate the effective indices of the guided modes, the thickness of each constituent layer, and the modal birefringences of a multilayer AlGaAs/AlAs waveguide, respectively. With the experimental accuracy afforded by these techniques we could precisely infer the bulk refractive indices of various films to comply with the strict requirements for phase-matched guided-wave devices.

© 2002 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(130.5990) Integrated optics : Semiconductors

Giuseppe Leo, Gaetano Assanto, Olivier Durand, and Vincent Berger, "Characterization of AlGaAs/AlAs waveguides for optical parametric interactions," J. Opt. Soc. Am. B 19, 902-910 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  2. C. F. Klingshirn, Semiconductor Optics (Springer-Verlag, Berlin, 1997).
  3. B. Di Bartolo, ed., Ultrafast Dynamics of Quantum Systems: Physical Processes and Spectroscopic Techniques, Vol. B372 of NATO ASI Series (Plenum, New York, 1997). [CrossRef]
  4. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997). [CrossRef]
  5. D. Zheng, A. Gordon, Y. S. Wu, R. S. Feigelson, M. M. Fejer, R. L. Byer, and K. L. Vodopyanov, “16-μm infrared generation by difference-frequency mixing in diffusion-bonded-stacked GaAs,” Opt. Lett. 23, 1010–1012 (1998). [CrossRef]
  6. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic χ(2) domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996). [CrossRef]
  7. A. Saher Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000). [CrossRef]
  8. S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “AlGaAs QPM waveguides fabricated by GaAs/Ge/GaAs (100) sublattice reversal epitaxy,” in Conference on Lasers and Electro-Optics (CLEO/Europe), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper CFA5, p. 365.
  9. V. Berger, “Photonic crystals for nonlinear optical frequency conversion,” in Confined Photon Systems, H. Benisty, J. Gèrard, R. Houdrè, J. Rarity, and C. Weisbuch, eds. (Springer-Verlag, Berlin, 1999), pp. 366–392.
  10. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994). [CrossRef] [PubMed]
  11. S. P. Survaiya and R. K. Shevgaonkar, “Design of subpicosecond dispersion flattened fiber,” IEEE Photon. Technol. Lett. 8, 803–805 (1996). [CrossRef]
  12. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase-matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998). [CrossRef]
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).
  14. P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurement of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995). [CrossRef]
  15. R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21, 581–583 (1985). [CrossRef]
  16. W. P. Wong and K. S. Chiang, “Design of optical strip-loaded waveguides with zero modal birefringence,” J. Lightwave Technol. 16, 1240–1244 (1998). [CrossRef]
  17. K. Inagaki and Y. Mizuguchi, “Optical signal processing beam forming network for steerable multibeam antenna,” presented at the Asia-Pacific Microwave Conference, Yokohama, Japan, December 8–11, 1998.
  18. A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996). [CrossRef]
  19. S. P. Hegarty, G. Huyet, P. Porta, J. G. McInerney, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Transverse-mode structure and pattern formation in oxide-confined vertical-cavity semiconductor lasers,” J. Opt. Soc. Am. B 16, 2060–2071 (1999). [CrossRef]
  20. G. Leo, V. Berger, C. OwYang, and J. Nagle, “Parametric fluorescence in oxidized AlGaAs waveguides,” J. Opt. Soc. Am. B 16, 1597–1602 (1999). [CrossRef]
  21. M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15, 59–63 (1974). [CrossRef]
  22. G. Leo, M. Secondini, M. Morabito, A. De Rossi, G. Assanto, A. Fiore, V. Berger, M. Calligaro, and J. Nagle, “Simultaneous measurement of modal birefringences in multilayer AlGaAs/AlAs waveguides,” Appl. Phys. Lett. 78, 1472–1474 (2001). [CrossRef]
  23. X. Mai, R. Moshrefzadeh, U. J. Gibson, G. I. Stegeman, and C. T. Seaton, “Simple versatile method for fabricating guided-wave gratings,” Appl. Opt. 24, 3155–3161 (1985). [CrossRef] [PubMed]
  24. R. G. Kaufman, G. R. Hulse, K. A. Stair, T. E. Bird, G. P. Devane, and A. L. Moretti, “Index of refraction ofGaAs/AlxGa1−xAs multiple quantum wells with an applied electric field using the grating coupling technique,” J. Appl. Phys. 77, 1747–1752 (1995). [CrossRef]
  25. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977). [CrossRef]
  26. B. Vidal and P. Vincent, “Metallic multilayers for x rays using classical thin-film theory,” Appl. Opt. 23, 1794–1801 (1984). [CrossRef] [PubMed]
  27. H. Kiessig, “Interferenz von Röntgenstrahlen an dunnen Schichten,” Ann. Phys. (Leipzig) 10, 769–772 (1931). [CrossRef]
  28. F. Bridou and B. Pardo, “Use of Fourier transform in grazing x-rays reflectometry,” J. Phys. III 4, 1523–1531 (1994).
  29. R. Stolte and R. Ulrich, “Electro-optic and thermo-optic measurements of birefringence of LiNbO3 waveguides,” Opt. Lett. 20, 142–144 (1995). [CrossRef] [PubMed]
  30. R. Eckhardt and R. Ulrich, “Mode-beating spectroscopy in a few-mode optical guide,” Appl. Phys. Lett. 63, 284–286 (1993). [CrossRef]
  31. D. Johlen, G. Stolze, H. Renner, and E. Brinkmeyer, “Measurement of the birefringence of UV-written channel silica waveguides by magnetooptic polarization-mode coupling,” J. Lightwave Technol. 18, 185–192 (2000). [CrossRef]
  32. A. Fiore, V. Berger, E. Rosencher, S. Crouzy, N. Laurent, and J. Nagle, “Δn=0.22 birefringence measurement by surface emitting second harmonic generation in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 71, 2587–2589 (1997). [CrossRef]
  33. Z. Qi, K. Itoh, and M. Murabayashi, “Measurement of the modal birefringence of single-mode K+ ion-exchanged planar waveguides with polarimetric interferometry,” Appl. Opt. 39, 5750–5754 (2000). [CrossRef]
  34. W. W. Hu, K. Inagaki, and Y. Mizuguchi, “Measurement of birefringence in integrated optical waveguides by use of a microwave-modulated optical wave,” Opt. Lett. 26, 193–195 (2001). [CrossRef]
  35. P. J. Vella, R. Normandin, and G. I. Stegeman, “Enhanced second-harmonic generation by counter-propagating guided optical waves,” Appl. Phys. Lett. 38, 759–760 (1981). [CrossRef]
  36. D. Vakhshoori, M. C. Wu, and S. Wang, “Surface-emitting second-harmonic generator for waveguide study,” Appl. Phys. Lett. 52, 422–424 (1988). [CrossRef]
  37. P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second harmonic generation in form of coherent Čerenkov radiation from a thin film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970). [CrossRef]
  38. G. Leo, C. Caldarella, G. Assanto, O. Durand, A. De Rossi, M. Calligaro, X. Marcadet, and V. Berger, “Characterization of AlGaAs waveguides for three-wave mixing,” in Conference on Lasers and Electro-Optics (CLEO/Europe), 2000 OSA Technical-Digest Series (Optical Society of America, Washington, D.C., 2000), paper CFA2, p. 363.
  39. N. D. Whitbread and P. N. Robson, “Theoretical analysis of passive visible surface-emitting second-harmonic generators,” IEEE J. Quantum Electron. 30, 139–147 (1994). [CrossRef]
  40. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  41. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, 1996), pp. 408–412.
  42. S. Adachi, “GaAs, AlAs, and AlGaAs: material parameters for use in research and device applications,” J. Appl. Phys. 58, R1–R27 (1985). [CrossRef]
  43. A. N. Pykthin and A. D. Yas’kov, “Dispersion of the refractive index of semiconductors with diamond and zinc-blende structure,” Sov. Phys. Semicond. 12, 622–625 (1978).
  44. R. E. Fern and A. Onton, “Refractive index of AlAs,” J. Appl. Phys. 42, 3499–3500 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited