## Stochastic quantum interferometry with Fock states

JOSA B, Vol. 19, Issue 5, pp. 1009-1018 (2002)

http://dx.doi.org/10.1364/JOSAB.19.001009

Enhanced HTML Acrobat PDF (357 KB)

### Abstract

We report the experimental realization of first- and second-order optical stochastic interferometry with single-photon Fock states and with a couple of photons generated by spontaneous parametric downconversion. The behavior of the constitutive element of the stochastic interferometer, the stochastic beam splitter, is theoretically described, both for first- and second-order interferometry. The theory predicts a reduction of the visibility from 1 to *π*/4 and to 1/2, respectively, for the two cases. These results are a direct consequence of the presence of Bose–Einstein correlations within the electromagnetic field. The visibility reduction obtained in the two experiments and their comparison with theoretical predictions are discussed in detail.

© 2002 Optical Society of America

**OCIS Codes**

(030.5260) Coherence and statistical optics : Photon counting

(270.0270) Quantum optics : Quantum optics

(270.5290) Quantum optics : Photon statistics

**Citation**

Francesco De Martini, Paolo Mataloni, Giovanni Di Giuseppe, and Fabrizio Altarelli, "Stochastic quantum interferometry with Fock states," J. Opt. Soc. Am. B **19**, 1009-1018 (2002)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-5-1009

Sort: Year | Journal | Reset

### References

- W. K. Wootters and W. H. Zurek, “Complementarity in the double-slit experiment: quantum nonseparability and a quantitative statement of Bohr’s principle,” Phys. Rev. D 19, 473–484 (1979). [CrossRef]
- L. S. Bartell, “Complementarity in the double-slit experiment: on simple realizable systems for observing intermediate particle-wave behavior,” Phys. Rev. D 21, 1698–1699 (1980). [CrossRef]
- M. Jammer, The Philosophy of Quantum Mechanics (Wiley, New York, 1974).
- F. De Martini, “The concept of photon and the paradoxes of the complementarity in optics,” in Niels Bohr Symposium Proceedings, Roma, 1985, Riv. Storia Sci. 2, 557 (1985).
- H. Rauch and J. Summhammer, “Static versus time-dependent absorption in neutron interferometry,” Phys. Lett. A 104, 44 (1984). [CrossRef]
- H. Rauch, J. Summhammer, and D. Tuppinger, “Stochastic and deterministic absorption in neutron-interference experiments,” Phys. Rev. A 36, 4447–4455 (1987). [CrossRef] [PubMed]
- F. De Martini and S. Di Fonzo, “Transition from Maxwell–Boltzmann to Bose–Einstein partition statistics by stochastic splitting of degenerate light,” Europhys. Lett. 10, 123–128 (1989). [CrossRef]
- F. De Martini, Foundations of Quantum Mechanics, M. O. Scully and M. M. Nieto, eds. (World Scientific, New York, 1992).
- N. Hussain, N. Imoto, and R. Loudon, “Quantum theory of dynamic interference experiments,” Phys. Rev. A 45, 1987–1996 (1992). [CrossRef] [PubMed]
- F. De Martini, L. De Dominicis, V. Cioccolanti, and G. Milani, “Stochastic interferometer,” Phys. Rev. A 45, 5144–5151 (1992). [CrossRef] [PubMed]
- F. De Martini and L. De Dominicis, “Bose–Einstein photon correlations in the stochastic interferometer,” Opt. Lett. 17, 429–431 (1992). [CrossRef] [PubMed]
- J. A. Wheeler, “The past and the delayed-choice double slit experiment,” Mathematical Foundations of Quantum Theory, A. R. Marlow, ed. (Academic, New York, 1978), pp. 250–253.
- M. O. Scully, B. G. Englert, and J. Schwinger, “Spin coherence and Humpty-Dumpty. III. The effects of observation,” Phys. Rev. A 40, 1775–1784 (1989). [CrossRef] [PubMed]
- D. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, New York, 1988).
- Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988). [CrossRef] [PubMed]
- Y. Shih and C. Alley, “New type of Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988). [CrossRef] [PubMed]
- D. Boschi, F. De Martini, and G. Di Giuseppe, “Quantum interference and Feynman path indistinguishability for particles in entangled states,” Fortschr. Phys. 46, 6–14 (1998).
- D. Bouwmeester, “The physics of quantum information: basic concepts,” The Physics of Quantum Information, D. Bouwmeester, A. Ekert, and A. Zeilinger, eds. (Springer, Berlin, 2000), pp.1–14.
- C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986). [CrossRef] [PubMed]
- D. Stoler and B. Yurke, “Generating antibunched light from the output of a nondegenerate frequency converter,” Phys. Rev. A 34, 3143–3147 (1986). [CrossRef] [PubMed]
- B. Yurke and D. Stoler, “Measurement of amplitude prob-ability distributions for photon-number-operator eigenstates,” Phys. Rev. A 36, 1955–1958 (1987). [CrossRef] [PubMed]
- B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Chap. 6.
- J. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, San Diego, 1987).
- F. De Martini, S. Di Fonzo, and R. Tommasini, in Coherence and Quantum Optics VI, J. Eberly, L. Mandel, and E. Wolf, eds. (Plenum, New York, 1990).
- F. De Martini and R. Tommasini, “Transition from classical “Maxwell–Boltzmann” to quantum Bose–Einstein partition statistics by stochastic scattering of degenerate light,” in New Frontiers of QED and Quantum Optics, A. Barut, ed. (Plenum, New York, 1990), pp. 54–58.
- B. De Finetti, Theory of Probability (Wiley, New York, 1975). The Fermi Dirac statistics has been obtained in the context of stochastic scattering by inserting in the integral of Eq. (11) a formal condition expressing a “particle exclusion principle,” i.e., the occupancy 0 or 1 of the output modes:J. Tersoff and D. Bayer, “Quantum statistics for distinguishable particles,” Phys. Rev. Lett. 50, 553–554 (1983). [CrossRef]
- J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, Reading, Mass., 1994).
- J. Preskill, “Lecture notes for Physics 229: quantum information and computation,” http://www.theory.caltech.edu/~preskill/ph229.
- M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).
- X. D. Wang, P. Basseras, R. J. D. Miller, J. Sweetser, and I. A. Walmsley, “Regenerative pulse amplification in the 10-KHz range,” Opt. Lett. 15, 839–841 (1990). [CrossRef] [PubMed]
- L. De Caro and A. Garuccio, “Reliability of Bell-inequality measurements using polarization correlations in parametric-down-conversion photon sources,” Phys. Rev. A 50, R2803–R2805 (1994). In virtue of expressions (33) and (50) the factorizability of the product state is not affected by the unitary transformation performed by the Sto-BS. The effective entangled state is determined at the BS output by state postselection obtained by the coincidence phodetection process. [CrossRef] [PubMed]
- R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A 40, 13711384 (1989). [CrossRef]
- G. Di Giuseppe, Laurea thesis (Universita’ di Roma “La Sapienza,” Rome, 1995).
- G. Di Giuseppe, L. Heiberger, F. De Martini, and A. V. Sergienko, “Quantum interference and indistinguishability with femtosecond pulses,” Phys. Rev. A 56, R21–R24 (1997). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.