OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 5 — May. 1, 2002
  • pp: 1150–1156

Retracing behavior and broadband generation based on quasi-phase-matched optical parametric processes

Chih-Wei Hsu, Chieh-Ting Chen, and Chih-Chung Yang  »View Author Affiliations


JOSA B, Vol. 19, Issue 5, pp. 1150-1156 (2002)
http://dx.doi.org/10.1364/JOSAB.19.001150


View Full Text Article

Enhanced HTML    Acrobat PDF (282 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Broadband operation based on retracing behavior (RB) of the phase-matching curves in various quasi-phase-matched materials with collinear, non-collinear, and quasi-collinear phase-matching schemes is theoretically studied. Broadband operation is feasible only at the degenerate point in a collinear configuration with a specific pump wavelength, λBC. Such a constraint sets a significant limitation on application of that scheme. With a noncollinear or a quasi-collinear phase-matching configuration the conditions and the resultant output signal ranges of broadband operation are much more flexible, particularly those that are useful for fiber communications and optical imaging of biological tissues. In a signal-resonated (idler-resonated) optical parametric oscillator (OPO) with a noncollinear or a quasi-collinear configuration, RB and hence broadband operation can be observed only for pump wavelengths shorter (longer) than λBC. Also, broadband operation for an idler-resonated OPO with a pump wavelength longer than λBC can be obtained only at the degenerate point. Nevertheless, broadband phenomena for a signal-resonated OPO with a pump wavelength shorter than λBC can be observed either at or away from the degenerate points.

© 2002 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

Citation
Chih-Wei Hsu, Chieh-Ting Chen, and Chih-Chung Yang, "Retracing behavior and broadband generation based on quasi-phase-matched optical parametric processes," J. Opt. Soc. Am. B 19, 1150-1156 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-5-1150


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in 1.2–1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731–732 (1999). [CrossRef]
  2. M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett. 35, 978–979 (1999). [CrossRef]
  3. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999). [CrossRef]
  4. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999). [CrossRef]
  5. S. Lin, B. Wu, F. Xie, and C. Chen, “Phase-matching retracing behavior: new features in LiB3O5,” Appl. Phys. Lett. 59, 1541–1543 (1991). [CrossRef]
  6. X. Liu, D. Deng, M. Li, D. Guo, and Z. Xu, “Retracing behavior of the phase-matching angle of nonlinear crystals in optical parametric oscillators,” J. Appl. Phys. 74, 2989–2991 (1993). [CrossRef]
  7. J. Wang, M. H. Dunn, and C. F. Rae, “Polychromatic optical parametric generation by simultaneous phase matching over a large spectral bandwidth,” Opt. Lett. 22, 763–765 (1997). [CrossRef] [PubMed]
  8. S. D. Huang, C. W. Hsu, D. W. Huang, and C. C. Yang, “Retracing behaviors of the phase-matching angle in noncollinear phase-matched optical parametric oscillators,” J. Opt. Soc. Am. B 15, 1375–1380 (1998). [CrossRef]
  9. A. J. Campillo, R. C. Hyer, and S. L. Shapiro, “Picosecond infrared-continuum generation by three-phonon parametric amplification in LiNbO3,” Opt. Lett. 4, 357–359 (1979). [CrossRef] [PubMed]
  10. A. Birmontas, A. Piskarskas, and A. Stabinis, “Dispersion anomalies of tuning characteristics and spectrum of an optical parametric oscillator,” Sov. J. Quantum Electron. 13, 1243–1245 (1983). [CrossRef]
  11. S. T. Yang and S. P. Velsko, “Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 24, 133–135 (1999). [CrossRef]
  12. M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, “Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators,” Opt. Lett. 24, 1227–1229 (1999). [CrossRef]
  13. V. Smilgevicius, A. Stabinis, A. Piskarskas, V. Pasiskevicius, J. Hellstrom, S. Wang, and F. Laurell, “Non-collinear optical parametric oscillator with periodically poled KTP,” Opt. Commun. 173, 365–369 (2000). [CrossRef]
  14. S. M. Russell, M. J. Missey, P. E. Powers, and K. L. Schepler, “Broadband mid-infrared generation in elliptically pumped periodically poled lithium niobate devices,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CThJ4.
  15. V. G. Dmitriev, G. G. Gurzdyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
  16. J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22, 1214–1216 (1997). [CrossRef] [PubMed]
  17. K. Fradkin, A. Arie, A. Skilar, and G. Rosenman, “Tunable mid-infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999). [CrossRef]
  18. K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Mid-infrared difference-frequency generation in periodi-cally poled KTiOAsO4 and application to gas sensing,” Opt. Lett. 25, 743–745 (2000). [CrossRef]
  19. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited