OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 5 — May. 1, 2002
  • pp: 1162–1168

Photonic-bandgap planar hollow waveguide

Andrei B. Fedotov, Aleksandr N. Naumov, Dimitrii A. Sidorov-Biryukov, Nikolai V. Chigarev, Aleksei M. Zheltikov, Joseph W. Haus, and Richard B. Miles  »View Author Affiliations


JOSA B, Vol. 19, Issue 5, pp. 1162-1168 (2002)
http://dx.doi.org/10.1364/JOSAB.19.001162


View Full Text Article

Acrobat PDF (462 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A combination of a diffraction grating and a mirror integrates a hollow waveguide and a photonic-bandgap structure into a compact optical element, offering a simple new structure for various applications in nonlinear and ultrafast optics. The main features of transmission spectra observed in experiments performed with such waveguide structures are qualitatively interpreted in terms of the coupled-mode theory. Localization of light near the surface of a metal-coated grating in lowest-order TM modes in the created waveguide enhances effects related to the photonic-bandgap structure.

© 2002 Optical Society of America

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(260.2030) Physical optics : Dispersion

Citation
Andrei B. Fedotov, Aleksandr N. Naumov, Dimitrii A. Sidorov-Biryukov, Nikolai V. Chigarev, Aleksei M. Zheltikov, Joseph W. Haus, and Richard B. Miles, "Photonic-bandgap planar hollow waveguide," J. Opt. Soc. Am. B 19, 1162-1168 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-5-1162


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10, 283–295 (1993).
  2. C. Soukoulis, ed., Photonic Band Gap Materials (Kluwer Academic, Dordrecht, The Netherlands, 1996).
  3. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals (Princeton University, Princeton, N. J., 1995).
  4. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).
  5. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
  6. I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morie-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B 65, 137–150 (1997).
  7. A. Y. Cho, A. Yariv, and P. Yeh, “Observation of confined propagation in Bragg waveguides,” Appl. Phys. Lett. 30, 471–472 (1977).
  8. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  9. S. S. Wang and R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt. 34, 2414–2420 (1995).
  10. G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, G. Tempea, F. Krausz, and K. Ferencz, “Mirror-dispersion-controlled sub-10-fs optical parametric amplifier in the visible,” Opt. Lett. 24, 1529–1531 (1999).
  11. O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, “Generation of intense 8-fs pulses at 400 nm,” Opt. Lett. 24, 34–36 (1999).
  12. N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–202 (1999).
  13. M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. Ledbetter, J. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: Large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
  14. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
  15. A. M. Zheltikov, A. V. Tarasishin, and S. A. Magnitskii, “Phase and group-velocity matching in ultrashort-pulse second-harmonic generation in one-dimensional photonic crystals,” J. Exp. Theor. Phys. 91, 298–306 (2000).
  16. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
  17. P. Tran, “Optical switching with a nonlinear photonic crystal: a numerical study,” Opt. Lett. 21, 1138–1140 (1996).
  18. P. Tran, “All-optical switching with a nonlinear chiral photonic bandgap structure,” J. Opt. Soc. Am. B 16, 70–73 (1999).
  19. S. Scholz, O. Hess, and R. Ruhle, “Dynamic cross-waveguide optical switching with a nonlinear photonic band-gap structure,” Opt. Express 3, 28–34 (1998).
  20. I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10, 640–644 (2000).
  21. R. Szipöcs, K. Ferencz, Ch. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994).
  22. A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz, and R. Szipöcs, “Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser,” Opt. Lett. 20, 602–604 (1995).
  23. L. Xu, Ch. Spielmann, F. Krausz, and R. Szipöcs, “Ultrabroadband ring oscillator for sub-10-fs pulse generation,” Opt. Lett. 21, 1259–1261 (1996).
  24. D. Kopf, A. Prasad, G. Zhang, M. Moser, and U. Keller, “Broadly tunable femtosecond Cr:LiSAF laser,” Opt. Lett. 22, 621–623 (1997).
  25. E. J. Mayer, J. Mobius, A. Euteneuer, W. W. Ruhle, and R. Szipöcs, “Ultrabroadband chirped mirrors for femtosecond lasers,” Opt. Lett. 22, 528–530 (1997).
  26. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22, 831–833 (1997).
  27. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
  28. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
  29. A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 368, 1412–1415 (1998).
  30. C. G. Durfee III, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999).
  31. E. Constant, D. Garzella, P. Breger, E. Mevel, Ch. Dorrer, C. Le Blanc, F. Salin, and P. Agostini, “Optimizing high harmonic generation in absorbing gases: model and experiment,” Phys. Rev. Lett. 82, 1668–1671 (1999).
  32. R. B. Miles, G. Laufer, and G. C. Bjorklund, “Coherent anti-Stokes Raman scattering in a hollow dielectric waveguide,” Appl. Phys. Lett. 30, 417–419 (1977).
  33. A. B. Fedotov, F. Giammanco, A. N. Naumov, P. Marsili, A. Ruffini, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Four-wave mixing of picosecond pulses in hollow fibers: expanding the possibilities of gas-phase analysis,” Appl. Phys. B 72, 575–582 (2001).
  34. K. Todori and S. Hayase, “Formation of pseudo one-dimensional photonic band in visible region by grating pair method,” Appl. Phys. Lett. 70, 550–552 (1997).
  35. M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981).
  36. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  37. S. O. Konorov, D. A. Akimov, A. N. Naumov, A. B. Fedotov, R. B. Miles, J. W. Haus, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering of slow light in a hollow planar periodically corrugated waveguide,” JETP Lett. 75, 66–70 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited