OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 5 — May. 1, 2002
  • pp: 1169–1173

Multiphoton transitions in a colored vacuum: coupling of the ac Stark shift with spontaneous decay and the Lamb shift

James Camparo and Peter Lambropoulos  »View Author Affiliations


JOSA B, Vol. 19, Issue 5, pp. 1169-1173 (2002)
http://dx.doi.org/10.1364/JOSAB.19.001169


View Full Text Article

Enhanced HTML    Acrobat PDF (200 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In free space, where the vacuum mode density varies relatively slowly in the spectral region of an atomic transition, an atom’s real-field and vacuum interactions are effectively decoupled. Consequently, spontaneous decay and the Lamb shift are, for all practical purposes, independent of any real-field atomic perturbation. However, in a colored vacuum (i.e., a low-Q cavity) the vacuum mode density can change significantly in the vicinity of an atomic transition, so that a Stark shift will alter an atom’s vacuum environment and thereby couple real-field and vacuum effects. Since the ac Stark shift is an inherent aspect of multiphoton processes, this coupling is unavoidable for highly nonlinear field–atom interactions that occur in cavities. Here we consider this effect for 3+2 resonance-enhanced multiphoton ionization of xenon.

© 2002 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.3690) Atomic and molecular physics : Line shapes and shifts
(190.4180) Nonlinear optics : Multiphoton processes
(270.0270) Quantum optics : Quantum optics
(270.6620) Quantum optics : Strong-field processes

Citation
James Camparo and Peter Lambropoulos, "Multiphoton transitions in a colored vacuum: coupling of the ac Stark shift with spontaneous decay and the Lamb shift," J. Opt. Soc. Am. B 19, 1169-1173 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-5-1169


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. W. Milonni, The Quantum Vacuum (Academic, Boston, 1994).
  2. A. Kastler, “Displacement of energy levels of atoms by light,” J. Opt. Soc. Am. 53, 902–910 (1963). [CrossRef]
  3. M. Brune, P. Nussenzveig, F. Schmidt-Kaler, F. Bernardot, A. Maali, J. M. Raimond, and S. Haroche, “From Lamb shift to light shifts: vacuum and subphoton cavity fields measured by atomic phase sensitive detection,” Phys. Rev. Lett. 72, 3339–3342 (1994). [CrossRef] [PubMed]
  4. M. Marrocco, M. Weidinger, R. T. Sang, and H. Walther, “Quantum electrodynamic shifts of Rydberg energy levels between parallel metal plates,” Phys. Rev. Lett. 81, 5784–5787 (1998). [CrossRef]
  5. D. J. Heinzen and M. S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 2623–2626 (1987). [CrossRef] [PubMed]
  6. J. C. Camparo, “Semiclassical random electrodynamics: spontaneous emission and the Lamb shift,” J. Opt. Soc. Am. B 16, 173–181 (1999). [CrossRef]
  7. J. C. Camparo, “Semiclassical description of spontaneous decay in a colored vacuum,” Phys. Rev. A 65, 013815–1–013815–12 (2002).
  8. A. T. Georges and P. Lambropoulos, “Aspects of resonant multiphoton processes,” Adv. Electron. Electron Phys. 54, 191–240 (1980). [CrossRef]
  9. L. Allen and C. R. Stroud, Jr., “Broadening and saturation in n-photon absorption,” Phys. Rep. 91, 1–29 (1982). [CrossRef]
  10. C. M. Korendyke and D. G. Socker, “Measured optical performance of three Fabry–Perot interferometers for use in a tunable ultraviolet filter,” Opt. Eng. 32, 2281–2285 (1993). [CrossRef]
  11. T. H. Boyer, “General connection between random electrodynamics and quantum electrodynamics for free electromagnetic fields and for dipole oscillator systems,” Phys. Rev. D 11, 809–830 (1975). [CrossRef]
  12. W. Cheney and D. Kincaid, Numerical Mathematics and Computing (Brooks Cole, Monterey, Calif., 1985), Chap. 8.
  13. W. H. Press and S. A. Teukolsky, “Adaptive stepsize Runge–Kutta integration,” Comput. Phys. 6, 188–191 (1982). [CrossRef]
  14. J. F. Osantowski, R. A. M. Keski-Kuha, H. Herzig, A. R. Toft, J. S. Gum, and C. M. Fleetwood, “Optical coating technology for the EUV,” Adv. Space Res. 11(11), 185–201 (1991). [CrossRef]
  15. A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill, New York, 1962), Chap. 2.
  16. M. Lewenstein, T. W. Mossberg, and R. J. Glauber, “Dynamical suppression of spontaneous emission,” Phys. Rev. Lett. 59, 775–778 (1987). [CrossRef] [PubMed]
  17. M. Lewenstein and T. W. Mossberg, “Spectral and statistical properties of strongly driven atoms coupled to frequency-dependent photon reservoirs,” Phys. Rev. A 37, 2048–2062 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited