Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modeling pulsed excitation for gas-phase laser diagnostics

Not Accessible

Your library or personal account may give you access

Abstract

Excitation dynamics for pulsed optical excitation are described with the density-matrix equations and the rate equations for a two-level system. A critical comparison of the two descriptions is made with complete and consistent formalisms that are amenable to the modeling of applied laser-diagnostic techniques. General solutions, resulting from numerical integration of the differential equations describing the excitation process, are compared for collisional conditions that range from the completely coherent limit to the steady-state limit, for which the two formalisms are identical. This analysis demonstrates the failure of the rate equations to correctly describe the transient details of the excitation process outside the steady-state limit. However, reasonable estimates of the resultant population are obtained for nonsaturating (linear) excitation. This comparison provides the laser diagnostician with the means to evaluate the appropriate model for excitation through a simple picture of the breakdown of the rate-equation validity.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Picosecond pump-probe absorption spectroscopy in gases: models and experimental validation

Thomas B. Settersten and Mark A. Linne
Appl. Opt. 41(15) 2869-2878 (2002)

Degenerate four-wave mixing spectroscopy with short-pulse lasers: theoretical analysis

Thomas A. Reichardt and Robert P. Lucht
J. Opt. Soc. Am. B 13(12) 2807-2817 (1996)

Saturation effects in gas-phase degenerate four-wave mixing spectroscopy: nonperturbative calculations

Robert P. Lucht, Roger L. Farrow, and David J. Rakestraw
J. Opt. Soc. Am. B 10(9) 1508-1520 (1993)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (61)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved