OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 6 — Jun. 1, 2002
  • pp: 1247–1258

Evaluation of statistical noise in measurements based on correlated photons

Stefania Castelletto, Ivo Pietro Degiovanni, and Maria Luisa Rastello  »View Author Affiliations

JOSA B, Vol. 19, Issue 6, pp. 1247-1258 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (484 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical measurements in quantum communication and quantum radiometry are quite often based on two-photon correlated channels and the coincidence between them. To quantify the noise level in these measurements, the authors focus on the statistics of photon coincidence in a basic experimental setup, accounting for all experimental effects contributing to the noise increment. By the proposed theory the measurement performance is evaluated in terms of noise fluctuations. Particularly, an ultimate limit in noise reduction is established by the optimal estimation model herein presented.

© 2002 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(030.5290) Coherence and statistical optics : Photon statistics
(030.5630) Coherence and statistical optics : Radiometry
(030.6600) Coherence and statistical optics : Statistical optics
(040.3780) Detectors : Low light level
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.5290) Quantum optics : Photon statistics
(270.6570) Quantum optics : Squeezed states

Stefania Castelletto, Ivo Pietro Degiovanni, and Maria Luisa Rastello, "Evaluation of statistical noise in measurements based on correlated photons," J. Opt. Soc. Am. B 19, 1247-1258 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Mandel, “Proposal for almost noise-free optical communication under conditions of high background,” J. Opt. Soc. Am. B 1, 108–110 (1984). [CrossRef]
  2. E. Jakeman and J. G. Rarity, “The use of pair production processes to reduce quantum noise in transmissions measurements,” Opt. Commun. 59, 219–223 (1986). [CrossRef]
  3. J. G. Rarity, P. R. Tapster, and E. Jakeman, “Observation of sub-Poissonian light in parametric downconversion,” Opt. Commun. 62, 201–206 (1987). [CrossRef]
  4. J. G. Rarity and P. R. Tapster, “Quantum communication,” Appl. Phys. B 55, 298–303 (1992). [CrossRef]
  5. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970). [CrossRef]
  6. D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, New York, 1988).
  7. J. G. Rarity, K. D. Ridley, and P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt. 26, 4616–4619 (1987). [CrossRef] [PubMed]
  8. A. N. Penin and A. V. Sergienko, “Absolute standardless calibration of photodetectors based on quantum two-photon field,” Appl. Opt. 30, 3582–3588 (1991). [CrossRef] [PubMed]
  9. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, “Absolute efficiency and time-response measurement of single-photon detectors,” Appl. Opt. 33, 1844–1853 (1994). [CrossRef] [PubMed]
  10. A. L. Migdall, R. U. Datla, A. V. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996). [CrossRef]
  11. S. Castelletto, A. Godone, C. Novero, and M. L. Rastello, “Biphoton fields for quantum-efficiency measurement,” Metrologia 32, 501–503 (1996). [CrossRef]
  12. G. Brida, S. Castelletto, C. Novero, and M. L. Rastello, “Quantum efficiency measurement of photodetectors by means of correlated photons,” J. Opt. Soc. Am. B 16, 1623–1627 (1999). [CrossRef]
  13. G. Brida, S. Castelletto, I. P. Degiovanni, C. Novero, and M. L. Rastello, “Quantum efficiency and dead time measurement of single-photon photodiodes: a comparison between two techniques,” Metrologia 37, 625–628 (2000). [CrossRef]
  14. A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett. 69, 1293–1295 (1992). [CrossRef] [PubMed]
  15. A. V. Sergienko, M. Atature, Z. Walton, G. Jaeger, B. E. A. Saleh, and M. C. Teich, “Quantum cryptography using femtosecond-pulsed parametric down-conversion,” Phys. Rev. A 60, R2622–R2625 (1999). [CrossRef]
  16. T. Jennewein, G. Simon, G. Weihs, H. Weinfurther, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000). [CrossRef] [PubMed]
  17. D. Naik, C. Peterson, A. White, A. Berglund, and P. Kwiat, “Entangled state quantum cryptography: eavesdropping, on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000). [CrossRef] [PubMed]
  18. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000). [CrossRef] [PubMed]
  19. P. R. Tapster, J. G. Rarity, and P. Owens, “Violation of Bell’s inequality over 4 km of optical fiber,” Phys. Rev. Lett. 73, 1923–1926 (1994). [CrossRef] [PubMed]
  20. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett. 81, 3563–3566 (1998). [CrossRef]
  21. G. Weihs, T. Jennewein, C. Simon, H. Weinfurther, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett. 81, 5039–5043 (1998). [CrossRef]
  22. N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of non-collinear phase-matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000). [CrossRef]
  23. For detailed discussion of this argument we refer to Subsection 3.C.
  24. M. M. Hayat, A. Joobeur, and B. E. A. Saleh, “Reduction of quantum noise in transmittance estimation using photon-correlated beams,” J. Opt. Soc. Am. A 16, 348–358 (1999). [CrossRef]
  25. M. M. Hayat, S. N. Torres, and L. M. Pedrotti, “Theory of photon coincidence statistics in photon-correlated beams,” Opt. Commun. 169, 275–287 (1999). [CrossRef]
  26. A. Migdall, National Institute of Standards and Technology, Gaithersburg, Maryland, and S. Castelletto, I. P. Degiovanni, and M. L. Rastello, Istituto Elettrotecnico Nazionale G. Ferraris, Torino, Italy (personal communication).
  27. S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Theoretical aspects of photon number measurement,” Metrologia 37, 613–616 (2000). [CrossRef]
  28. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
  29. S. Castelletto, I. P. Degiovanni, and M. L. Rastello, Istituto Elettrotecnico Nazionale G. Ferraris, “Statistical models for quantum cryptography experiments based on polarization entangled photons,” Tech. Rep. 644 (Marzo, Italy, 2002).
  30. J. V. Beck and K. J. Arnold, Parameter Estimation in Engineering and Science (Wiley, New York, 1977).
  31. To compare forwardly the result of εR (ηs πs ︿NP) with εR (ηs πs ︿NP)Gauss, we do not consider τs as an input quantity. To calculate the uncertainty in the case of a real measurement, it is obvious that τs should enter in the vector of input quantities.
  32. Incidentally, since in the two-photon beam setup the probe and the reference are separate channels, measurements on them can be performed at the same time, thus exploiting quantum correlation between measured quantities.
  33. To this respect, we point out that considerations regarding the reference as a metrological standard, i.e., accuracy and traceability, are addressed neither in the two-photon-beam nor in the single-beam configuration. Note that in the two-photon-beam arrangement the measurement is standardless, whereas in the single-beam setup a necessary further traceability uncertainty should be added to the statistical uncertainty considered here.
  34. C. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), pp. 175–179.
  35. A. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef] [PubMed]
  36. G. Brassard, N. Lutkenhaus, T. Mor, and B. Sanders, “Limitations of practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000). [CrossRef] [PubMed]
  37. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited