OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 6 — Jun. 1, 2002
  • pp: 1318–1325

Steady-state thermo-optic model of a continuous-wave Raman laser

Joshua C. Bienfang, Wolfgang Rudolph, Peter A. Roos, Lei S. Meng, and John L. Carlsten  »View Author Affiliations

JOSA B, Vol. 19, Issue 6, pp. 1318-1325 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (230 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a model of a cw Raman laser that includes thermo-optic effects that are due to the heating that is inherent in Raman conversion. Thermal lensing and thermal index gratings at high output powers are addressed. With a quadratic duct model we show that broadening of the spatial modes is evident at low Stokes output powers and that accounting for thermal lensing in the laser design can significantly enhance the conversion efficiency. The model agrees with experimental results from a cw H2 Raman laser and allows for the design of high-power and solid-state cw Raman lasers.

© 2002 Optical Society of America

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(140.6810) Lasers and laser optics : Thermal effects
(190.4870) Nonlinear optics : Photothermal effects
(290.5910) Scattering : Scattering, stimulated Raman
(350.6830) Other areas of optics : Thermal lensing

Joshua C. Bienfang, Wolfgang Rudolph, Peter A. Roos, Lei S. Meng, and John L. Carlsten, "Steady-state thermo-optic model of a continuous-wave Raman laser," J. Opt. Soc. Am. B 19, 1318-1325 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, “Continuous-wave Raman laser in H2,” Opt. Lett. 23, 367–369 (1998). [CrossRef]
  2. J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “Characterization of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 16, 1305–1312 (1999). [CrossRef]
  3. L. S. Meng, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “High conversion efficiency, diode-pumped continuous-wave Raman laser,” Opt. Lett. 26, 426–428 (2001). [CrossRef]
  4. P. A. Roos, J. K. Brasseur, and J. L. Carlsten, “Intensity dependent refractive index in a non-resonant cw Raman laser that is due to thermal heating of the Raman-active gas,” J. Opt. Soc. Am. B 17, 758–763 (2000). [CrossRef]
  5. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), pp. 115–121.
  6. L. Casperson and A. Yariv, “The Gaussian mode in optical resonators with a radial gain profile,” Appl. Phys. Lett. 12, 355–357 (1968). [CrossRef]
  7. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using in optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  8. K. S. Repasky, L. Meng, J. K. Brasseur, and J. L. Carlsten, “High-efficiency, continuous-wave Raman lasers,” J. Opt. Soc. Am. B 16, 717–721 (1999). [CrossRef]
  9. G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-5, 203–206 (1969). [CrossRef]
  10. Y. S. Choi, “Asymmetry of the forward and backward Raman gain coefficient at 1.54 μm in methane,” Appl. Opt. 40, 1925–1930 (2001). [CrossRef]
  11. J. P. Gordon, R. C. C. Leite, R. S. Moore, P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965). [CrossRef]
  12. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon, Oxford, 1986), pp. 260–261.
  13. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1972), pp. 228–229.
  14. P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, and V. E. Yakobson, “Physical, chemical, and optical properties of barium nitrate Raman crystal,” Opt. Mater. 11, 315–334 (1999). [CrossRef]
  15. P. A. Roos, L. S. Meng, J. L. Carlsten, “Using an injection-locked diode laser to pump a cw Raman laser,” IEEE J. Quantum Electron. 36, 1280–1283 (2000). [CrossRef]
  16. J. J. Ottusch and D. A. Rockwell, “Measurements of Raman gain coefficients in hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988). [CrossRef]
  17. D. E. Gray, ed., American Institute of Physics Handbook, 2nd ed. (McGraw-Hill, New York, 1963).
  18. D. R. Lide, ed., Handbook of Chemistry and Physics, 80th ed. (CRC Press, New York, 1999), p. 6–171.
  19. M. M. Audibert, C. Joffrin, and J. Ducuing, “Vibrational relaxation of H2 in the range 500–40 K,” Chem. Phys. Lett. 25, 158–163 (1974). [CrossRef]
  20. Y. Suzaki and A. Tachibana, “Measurement of the micron-sized radius of Gaussian laser beam using the scanning knife-edge,” Appl. Opt. 14, 2809–2810 (1975). [CrossRef] [PubMed]
  21. H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986), pp. 101–107.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited