OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 6 — Jun. 1, 2002
  • pp: 1326–1334

Optimum conditions for ultraviolet-laser generation based on self-frequency sum mixing in Nd3+-activated borate crystals

Daniel Jaque  »View Author Affiliations

JOSA B, Vol. 19, Issue 6, pp. 1326-1334 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (229 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple theoretical model of the ultraviolet laser radiation generated by self-frequency sum mixing in a single argon-pumped Nd3+-doped nonlinear crystal is proposed. Self-absorption by both absorption edge and Nd3+ bands lying in the ultraviolet range is taken into account. The model is then applied to Nd3+:YAl3(BO3)4,Nd3+:GdCa4O(BO3)3, and Nd3+:YCa4O(BO3)3 borate laser crystals. The crystal length, pump wavelength, and Nd3 concentration that optimize the pump to ultraviolet efficiency are determined for each case. The ultraviolet output power is found to be tens of milliwatts for a pump power of 2 W.

© 2002 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.5940) Nonlinear optics : Self-action effects

Daniel Jaque, "Optimum conditions for ultraviolet-laser generation based on self-frequency sum mixing in Nd3+-activated borate crystals," J. Opt. Soc. Am. B 19, 1326-1334 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Lien, R. A. John, M. Angelopoulos, K. E. Lee, H. Takano, K. Tajima, and A. Takenaka, “UV modification of surface pretilt of alignment layers for multidomain liquid crystal displays,” Appl. Phys. Lett. 67, 3108–3110 (1995). [CrossRef]
  2. J. Holtz, R. W. Bormett, C. Zhenhuan, C. Namjun, X. G. Chen, V. Pajcini, S. A. Asher, L. Spinelli, P. Owen, and M. Arrigoni, “Applications of a new 206.5-nm continuous-wave laser source: UV Raman determination of protein secondary structure and CVD diamond material properties,” Appl. Spectrosc. 50, 1459–1568 (1996). [CrossRef]
  3. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995). [CrossRef] [PubMed]
  4. M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, and S. Kubota, “Deep UV mastering using an all-solid-state 266 nm laser for an over 20 Gbytes/layer capacity disk,” Jpn. J. Appl. Phys. 38, 1837–1838 (1999). [CrossRef]
  5. T. Makino, N. T. Tuan, H. D. Sun, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Temperature dependence of near ultraviolet photoluminescence in ZnO/(MgO, Zn)O multiple quantum wells,” Appl. Phys. Lett. 78, 1979–1981 (2001). [CrossRef]
  6. Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakumura, “Dynamics of optical gain in InxGa1−xN multi-quantum-well-based laser diodes,” Appl. Phys. Lett. 77, 2151–2153 (2000). [CrossRef]
  7. S. Bidnyk, J. B. Lam, D. Little, Y. H. Kwon, J. J. Song, G. E. Bulman, H. S. Kong, and T. J. Schmidt, “Mechanism of efficient ultraviolet lasing in GaN/AlGaN separate-confinement heterostructures,” Appl. Phys. Lett. 75, 3905–3907 (1999). [CrossRef]
  8. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).
  9. T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. 30, 1–54 (2000). [CrossRef]
  10. Y. Kaneda and S. Kubota, “Continuous wave 355-nm laser source based on doubly resonant sum-frequency mixing in an external resonator,” Opt. Lett. 20, 2204–2206 (1995). [CrossRef]
  11. M. Watanabe, K. Hayasaka, H. Imajo, R. Ohmukai, and S. Urabe, “Sum frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. 33, 1599–1602 (1994). [CrossRef]
  12. Y. Kaneda and S. Kubota, “Continuous wave 355 nm all solid state laser,” in Conference on Lasers and Electro Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 236–242.
  13. Y. Kaneda, S. Kubota, H. Yamatsu, M. Furuki, K. Kurokawa, and T. Kashiwagi, “Disk mastering processes with an all-solid-state ultraviolet laser,” Jpn. J. Appl. Phys. 37, 2125–2129 (1998). [CrossRef]
  14. S. Sayama and M. Ohtsu, “Tunable UV cw generation by frequency tripling of a Ti:sapphire laser,” Opt. Commun. 137, 295–298 (1997). [CrossRef]
  15. F. Huang, Q. Luo, T. Lou, T. Yu, J. Dong, B. Lei, and Y. Wei, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111–115 (2001). [CrossRef]
  16. S. Sayama and M. Ohtsu, “Tunable UV cw generation at 276 nm wavelength by frequency conversion of laser diodes,” Opt. Commun. 145, 95–97 (1998). [CrossRef]
  17. J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000). [CrossRef]
  18. A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin, 1981).
  19. D. Jaque, J. Capmany, F. Molero, and J. García Solé, “Blue light laser source by frequency sum in Nd:YAB,” Appl. Phys. Lett. 73, 3659–3661 (1998). [CrossRef]
  20. D. Jaque, J. Capmany, and J. García Solé, “Red, green and blue laser light from a single NYAB crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–327 (1999). [CrossRef]
  21. D. Jaque, J. Capmany, and J. García Solé, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3)4:Nd,” Appl. Phys. Lett. 74, 1788–1791 (1999). [CrossRef]
  22. A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable UV generation,” J. Lumin. 86, 125–128 (2000). [CrossRef]
  23. F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “Cw blue laser generation by self-sum frequency mixing in Nd:Ca4GdO(BO3)3 (Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999). [CrossRef]
  24. F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997). [CrossRef]
  25. J. Lu, G. Li, J. Liu, S. Zhang, H. Chen, M. Jiang, and Z. Shao, “Second harmonic generation and self frequency doubling performance in Nd:GdCa4O(BO3)3 crystal,” Opt. Commun. 168, 405–408 (1999). [CrossRef]
  26. Q. Ye, L. Shah, J. Eichenholz, D. Hammons, R. Peale, M. Richardson, A. Chin, and B. H. T. Chai, “Investigation of diode-pumped, self-frequency doubled RGB lasers from Nd:YCOB crystals,” Opt. Commun. 164, 33–37 (1997). [CrossRef]
  27. D. Jaque and J. J. Romero, “Continuous wave ultraviolet laser source based on self-frequency-sum-mixing in Nd3+:YAl3(BO3)4,” J. Appl. Phys. 90, 1070–1072 (2001). [CrossRef]
  28. Z. D. Luo, “Features and applications of a new self-frequency-doubling laser crystals-NYAB,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, J. T. Lin, ed., Proc. SPIE 1104, 132–137 (1989). [CrossRef]
  29. D. Jaque, J. Capmany, J. García Solé, Z. D. Luo, and A. D. Jiang, “Cw laser properties of NYAB self-frequency-doubling laser crystal,” J. Opt. Soc. Am. B 15, 1656–1662 (1998). [CrossRef]
  30. Q. Ye and B. H. T. Chai, “Crystal growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197, 228–235 (1999). [CrossRef]
  31. G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, N. Le Nain, and M. Jacquet, “Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3,” J. Alloys Comp. 303, 401–408 (2000). [CrossRef]
  32. B.-S. Lu, J. Wang, H.-F. Pan, M.-H. Jiang, E. Q. Liu, and X. Y. Hou, “Laser self-doubling in neodymium yttrium aluminum borate,” J. Appl. Phys. 66, 6052–6054 (1989). [CrossRef]
  33. G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. L. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997). [CrossRef]
  34. F. Mougel, G. Aka, F. Salin, D. Pelenc, B. Ferrand, A. Kahan-Harari, and D. Vivien, “Accurate second harmonic generation phase matching angles prediction and evaluation of nonlinear coefficients of YCOB crystal,” in Advanced Solid State Lasers, Vol. 26 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1999), pp. 709–714.
  35. T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, “Measurements of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal,” Appl. Phys. Lett. 57, 980–982 (1990). [CrossRef]
  36. A. Brenier, G. Boulon, D. Jaque, and J. García Solé, “Self frequency summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999). [CrossRef]
  37. X. Y. Chen, Z. D. Luo, and Y. D. Huang, “Modelling of the self sum-frequency-mixing laser,” Chin. Phys. Lett. 18, 230–232 (2001). [CrossRef]
  38. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1988). [CrossRef]
  39. N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer-Verlag, Berlin, 1997).
  40. Z. D. Luo, “Determination of optimum neodymium concentration in NYAB self frequency doubling laser,” Prog. Natural Sci. 4, 504–507 (1994).
  41. D. Vivien, F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, P. Aschehoug, J. M. Benitez, N. L. Nain, and M. Jacquet, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16, 213–220 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited