OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 6 — Jun. 1, 2002
  • pp: 1342–1348

Thermal-lens model compared with the Sheik-Bahae formalism in interpreting Z-scan experiments on lyotropic liquid crystals

Fabio Luiz Sant’Anna Cuppo, Antônio Martins Figueiredo Neto, Sergio Leonardo Gómez, and Peter Palffy-Muhoray  »View Author Affiliations


JOSA B, Vol. 19, Issue 6, pp. 1342-1348 (2002)
http://dx.doi.org/10.1364/JOSAB.19.001342


View Full Text Article

Enhanced HTML    Acrobat PDF (180 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We carried out Z-scan measurements on lyotropic liquid crystals and on lyotropic liquid crystals doped with ferrofluid. In these experiments, the sample is translated through the focal region of a focused Gaussian laser beam. The dependence of the far-field intensity on sample position due to intensity-dependent optical nonlinearities has been analyzed on the basis of the thermal-lens model of Gordon et al. and the Gaussian decomposition analysis of Sheik-Bahae et al. The thermal-lens model is nonlocal in space and time, whereas the Gaussian decomposition is predicated on a strictly local response. We compare the goodness of fit of the predictions of these models to experimental data, and we discuss limitations of these models in describing Z-scan experiments on systems with nonlocal response.

© 2002 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

Citation
Fabio Luiz Sant’Anna Cuppo, Antônio Martins Figueiredo Neto, Sergio Leonardo Gómez, and Peter Palffy-Muhoray, "Thermal-lens model compared with the Sheik-Bahae formalism in interpreting Z-scan experiments on lyotropic liquid crystals," J. Opt. Soc. Am. B 19, 1342-1348 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-6-1342


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity single-beam n2 measurements,” Opt. Lett. 14, 955957 (1989). [CrossRef] [PubMed]
  2. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760769 (1990). [CrossRef]
  3. W. Zhao and P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63, 16131615 (1993). [CrossRef]
  4. L. C. Oliveira and S. C. Zilio, “Single-beam time-resolved z-scan measurements of slow absorbers,” Appl. Phys. Lett. 65, 21212123 (1994). [CrossRef]
  5. A. S. Durate, H. L. Fragnito, and E. Palange, “Light induced permanent modifications of the nonlinear optical properties of semiconductor doped glasses,” Solid State Commun. 100, 463466 (1996). [CrossRef]
  6. D. V. Petrov, A. S. L. Gomes, and C. B. de Araújo, “Reflection of a Gaussian beam from a saturable absorber,” Opt. Commun. 123, 637641 (1996). [CrossRef]
  7. D. I. Kovsh, D. J. Hagan, and E. W. Van Stryland, “Numerical modeling of thermal refraction in liquids in the transient regime,” Opt. Express 4, 315327 (1999). [CrossRef] [PubMed]
  8. H. J. Yuan, L. Li, and P. Palffy-Muhoray, “Nonlinear birefringence of nematic liquid crystals,” Proc. SPIE 1307, 363373 (1990). [CrossRef]
  9. H. J. Yuan, L. Li, and P. Palffy-Muhoray, “Nonlinear birefringence of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 199, 223232 (1991). [CrossRef]
  10. P. Palffy-Muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. DeSalvo, T. H. Wei, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of 3rd order optical nonlin-earities of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 207, 291305 (1991). [CrossRef]
  11. C. W. Greeff, J. Lu, and M. A. Lee, “Theoretical-study of mechanisms of nonlinear-optical response in liquid-crystals,” Liq. Cryst. 15, 7585 (1993). [CrossRef]
  12. P. Palffy-Muhoray, T. Wei, and W. Zhao, “Z-scan measurements on liquid-crystals: some considerations and results,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 251, 1931 (1994). [CrossRef]
  13. F. Simoni, “Non-linear optics in liquid crystals: basic ideas and perspectives,” Liq. Cryst. 24, 8389 (1998). [CrossRef]
  14. S. L. Gómez, F. L. S. Cuppo, A. M. Figueiredo Neto, T. Kosa, M. Muramatsu, and R. J. Horowicz, “Z-scan measurement of the nonlinear refractive indices of micellar lyotropic liquid crystals with and without the ferrofluid doping,” Phys. Rev. E 59, 30593063 (1999). [CrossRef]
  15. R. C. C. Leite, R. S. Moore, and J. R. Whinnery, “Low absorption measurements by means of thermal lens effect using HeNe laser (absorption 10−3 to 10−5 cm−1 stimulated Raman scattering ET),” Appl. Phys. Lett. 5, 141143 (1964). [CrossRef]
  16. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 38 (1965). [CrossRef]
  17. C. Hu and J. R. Whinnery, “New thermooptical measurement method and a comparison with other methods,” Appl. Opt. 12, 7279 (1973). [CrossRef] [PubMed]
  18. J. R. Whinnery, “Laser measurement of optical-absorption in liquids,” Acc. Chem. Res. 7, 225231 (1974). [CrossRef]
  19. C. A. Carter and J. M. Harris, “Comparison of models describing the thermal lens effect,” Appl. Opt. 23, 476481 (1984). [CrossRef] [PubMed]
  20. A. M. Figueiredo Neto, Y. Galerne, A. M. Levelut, and L. Liébert, Physics of Complex and Supermolecular Fluids, Exxon Monograph Series, S. A. Safran and N. A. Clark, eds. (Wiley, New York, 1987), p. 347.
  21. In situations where the medium presents a slow (ms) thermal response, Oliveira and Zilio4 proposed a time-resolved signal-detection scheme to eliminate any parasitic linear effects. The data-acquisition setup measures the transmitted intensity at t=0 {I(z, 0)} and t=τ (≫tc, a characteristic relaxation time) {I(z, τ)} and evaluates the ratio I(z, 0)/I(z, τ).
  22. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 78th ed. (CRC Press, Boca Raton, Fla., 1997).
  23. A. C. Bento, A. J. Palangana, L. R. Evangelista, M. L. Baesso, J. R. D. Pereira, E. C. da Silva, and A. M. Mansanares, “Geometrical anisotropy dependence of thermal diffusivity in lyotropic nematics: mode mismatched thermal lens measurements,” Appl. Phys. Lett. 68, 33713373 (1996). [CrossRef]
  24. C. P. Bastos dos Santos and A. M. Figueiredo Neto, “Measurement of the coefficient of thermal-expansion of uniaxial and biaxial lyotropic nematics: disk and rods or intrinsically biaxial micelles,” Langmuir 7, 26262629 (1991). [CrossRef]
  25. M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 12281235 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited