OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 6 — Jun. 1, 2002
  • pp: 1355–1362

Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement

Jorge R. Zurita-Sánchez and Lukas Novotny  »View Author Affiliations

JOSA B, Vol. 19, Issue 6, pp. 1355-1362 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theoretical investigation of a semiconductor quantum dot interacting with a strongly localized optical field as encountered in high-resolution near-field optical microscopy. The strong gradients of these localized fields suggest that higher-order multipolar interactions will affect the standard electric dipole transition rates and selection rules. For a semiconductor quantum dot in the strong confinement limit we calculated the interband electric quadrupole absorption rate and the associated selection rules. We found that the electric quadrupole absorption rate is comparable with the absorption rate calculated in the electric dipole approximation. This implies that near-field optical techniques can extend the range of spectroscopic measurements beyond the standard dipole approximation. However, we also show that spatial resolution cannot be improved by the selective excitation of electric quadrupole transitions.

© 2002 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials
(180.5810) Microscopy : Scanning microscopy
(300.6470) Spectroscopy : Spectroscopy, semiconductors

Jorge R. Zurita-Sánchez and Lukas Novotny, "Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement," J. Opt. Soc. Am. B 19, 1355-1362 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. For a recent review, see, R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891–2927 (1999). [CrossRef]
  2. N. van Hulst, ed., Proceedings of the 6th International Near-field Optics Conference, J. Microsc. (Oxford) 202, 1–450 (2001). [CrossRef]
  3. R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, and K. W. West, “Optical spectros-copy of GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994). [CrossRef]
  4. J. Levy, V. Nikitin, J. M. Kikkawa, A. Cohen, N. Samarth, R. Garcia, and D. D. Awschalom, “Spatiotemporal near-field spin microscopy in patterned magnetic heterostructures,” Phys. Rev. Lett. 76, 1948–1951 (1996). [CrossRef] [PubMed]
  5. A. Richter, M. Stüptitz, Ch. Lienau, T. Elsaesser, M. Ramsteiner, R. Nötzel, and K. H. Ploog, “Carrier trapping into single GaAs quantum wires studied by variable temperature near-field spectroscopy,” Ultramicroscopy 71, 205–212 (1998). [CrossRef]
  6. A. von der Heydt, A. Knorr, B. Hanewinkel, and S. W. Koch, “Optical near-field excitation at the semiconductor band edge: field distributions, anisotropic transitions and quadrupole enhancement,” J. Chem. Phys. 112, 7831–7838 (2000). [CrossRef]
  7. O. Mauritz, G. Goldoni, F. Rossi, and E. Molinari, “Local optical spectroscopy in quantum confined systems: a theoretical description,” Phys. Rev. Lett. 82, 847–850 (1999). [CrossRef]
  8. A. Knorr, S. W. Koch, and W. W. Chow, “Optics in the multipole approximation: from atomic systems to solids,” Opt. Commun. 179, 167–178 (2000). [CrossRef]
  9. B. Hanewinkel, A. Knorr, P. Thomas, and S. W. Koch, “Optical near-field response of semiconductor quantum dots,” Phys. Rev. B 55, 13,715–13,725 (1997). [CrossRef]
  10. G. W. Bryant, “Probing quantum nanostructures with near-field microscopy and vice versa,” Appl. Phys. Lett. 72, 768–770 (1998). [CrossRef]
  11. A. Chavez-Pirson and S. T. Chu, “A full vector analysis of near-field luminescence probing of a single quantum dot,” Appl. Phys. Lett. 74, 1507–1509 (1999). [CrossRef]
  12. H. F. Hamann, M. Kuno, A. Gallagher, and D. J. Nesbitt, “Molecular fluorescence in the vicinity of a nanoscopic probe,” J. Chem. Phys. 114, 8596–8609 (2001). [CrossRef]
  13. Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, “Strength of the electric field in apertureless optical near-field microscopy,” J. Appl. Phys. 89, 5774–5778 (2001). [CrossRef]
  14. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999), and references therein. [CrossRef]
  15. L. Novotny, “Forces in optical near-fields,” in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer-Verlag, Berlin, 2001), pp. 123–141.
  16. R. G. Woolley, “A comment on ‘The multiple Hamiltonian for time dependent fields,’” J. Phys. B 6, L97–L99 (1973). [CrossRef]
  17. L. D. Barron and C. G. Gray, “The multiple interaction Hamiltonian for time dependent fields,” J. Phys. A 6, 59–61 (1973). [CrossRef]
  18. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1993).
  19. L. Bányai and S. W. Koch, Semiconductor Quantum Dots (World Scientific, Singapore, 1993).
  20. Ch. Hafner, The Generalized Multiple Multipole Technique for Computational Electromagnetics (Artech House, Norwood, Mass., 1990).
  21. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997). [CrossRef]
  22. C. T. Tai, Dyadic Green’s Functions in Electromagnetic Theory (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1993).
  23. P. Yu and M. Cardona, Fundamentals of Semiconductors (Springer-Verlag, Berlin, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited