OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 6 — Jun. 1, 2002
  • pp: 1435–1453

Luminescence of dye molecules on oxidized silicon and fluorescence interference contrast microscopy of biomembranes

Armin Lambacher and Peter Fromherz  »View Author Affiliations

JOSA B, Vol. 19, Issue 6, pp. 1435-1453 (2002)

View Full Text Article

Acrobat PDF (559 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The luminescence of dye molecules depends on their position in a layered optical system. Conversely, the luminescence can be applied to measure the position of dye molecules above an interface. We formulate the electromagnetic theory of stationary fluorescence in a layered optical system—of light absorption, light detection, and fluorescence lifetime—computing the angular dependence of dipole interaction with all plane waves by a classical Sommerfeld approach. The theory is checked by experiments with stained lipid membranes on silicon with 256 terraces of silicon dioxide. We apply the electromagnetic theory to fluorescence micrographs of living cells on oxidized silicon chips and evaluate distances between the cell membrane and the substrate in a range of 1–150 nm.

© 2002 Optical Society of America

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(240.0310) Optics at surfaces : Thin films
(260.2110) Physical optics : Electromagnetic optics
(260.2510) Physical optics : Fluorescence
(260.3800) Physical optics : Luminescence

Armin Lambacher and Peter Fromherz, "Luminescence of dye molecules on oxidized silicon and fluorescence interference contrast microscopy of biomembranes," J. Opt. Soc. Am. B 19, 1435-1453 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. H. Drexhage, H. Kuhn, and F. P. Schäfer, “Variation of fluorescence decay time of a molecule in front of a mirror,” Ber. Bunsenges. Phys. Chem. 72, 329 (1968).
  2. H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53, 1071–108 (1970).
  3. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt. 12, 163–232 (1974).
  4. K. H. Tews, “Zur Variation von Lumineszenz-Lebensdauern,” Ann. Phys. (Leipzig) 29, 97–120 (1973).
  5. R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
  6. R. R. Chance, A. Prock, and R. Silbey, “Comments on the classical theory of energy transfer,” J. Chem. Phys. 62, 2245–2253 (1975).
  7. R. R. Chance, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: the complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589–1595 (1975).
  8. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am. 67, 1607–1615 (1977).
  9. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. I. Plane-wave spectrum approach to modeling classical effects,” J. Opt. Soc. Am. B 14, 1149–1159 (1997).
  10. H. Bücher, K. H. Drexhage, M. Fleck, H. Kuhn, D. Möbius, F. P. Schäfer, J. Sondermann, W. Sperling, P. Tillmann, and J. Wiegand, “Controlled transfer of excitation energy through thin layers,” Mol. Cryst. 2, 199–230 (1967).
  11. P. Fromherz and R. Kotulla, “Fluorescent dye in soap lamella as a probe of the electrical potential,” Ber. Bunsenges. Phys. Chem. 88, 1106–1112 (1984).
  12. A. Lambacher and P. Fromherz, “Fluorescence interference contrast microscopy on oxidized silicon using a monomolecular dye layer,” Appl. Phys. A 63, 207–216 (1996).
  13. D. Braun and P. Fromherz, “Fluorescence interference contrast microscopy of cell adhesion on silicon,” Appl. Phys. A 65, 341–348 (1997).
  14. D. Braun and P. Fromherz, “Fluorescence interferometry of neuronal cell adhesion on microstructured silicon,” Phys. Rev. Lett. 81, 5241–5244 (1998).
  15. G. Zeck and P. Fromherz are preparing a manuscript to be called “Steric repulsion of laminin with sedimented giant lipid vesicles and in cell adhesion.”
  16. P. Fromherz, V. Kiessling, K. Kottig, and G. Zeck, “Membrane-transistor with giant lipid vesicle touching a silicon chip,” Appl. Phys. A 69, 571–576 (1999).
  17. Y. Iwanaga, D. Braun, and P. Fromherz, “No correlation of focal contacts and close adhesion by comparing GFP-vinculin and fluorescence interference of DiI,” Eur. Biophys. J. 30, 17–26 (2001).
  18. J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17, 1906–1913 (2000).
  19. J. Enderlein, “A theoretical investigation of single-molecule fluorescence detection on thin metallic layers,” Biophys. J. 78, 2151–2158 (2000).
  20. M. Stavola, D. L. Dexter, and R. S. Knox, “Electron–hole pair excitation in semiconductors via energy transfer from an external sensitizer,” Phys. Rev. B 31, 2277–2289 (1985).
  21. A. Sommerfeld, “Über die Ausbreitung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. (Leipzig) 28, 665–736 (1909).
  22. A. Sommerfeld, Electrodynamics: Lectures on Theoretical Physics (Academic, San Diego, Calif., 1964), Vol. 3.
  23. L. D. Landau and E. M. Lifschitz, Theoretical Physics (Butterworth-Heineman, Oxford, UK, 1982).
  24. T. Förster, Fluoreszenz Organischer Verbindungen (Vandenhoeck & Ruprecht, Göttingen, Germany, 1982).
  25. M. Born and E. Wolf, Principles of Optics 6th ed. (Pergamon, London, 1980).
  26. R. Weis and P. Fromherz, “Frequency dependent signal-transfer in neuron-transistors,” Phys. Rev. E 55, 877–889 (1997).
  27. P. Fromherz and G. Reinbold, “Energy transfer between fluorescent dyes spaced by multilayers of Cd-salts of fatty acids,” Thin Solid Films 160, 347–353 (1988).
  28. J. Sondermann, “Darstellung oberflächenaktiver Polymethincyanin-Farbstoffe mit langen N-Alkyl-Ketten,” Liebigs Ann. Chem. 749, 183–197 (1971).
  29. L. M. Loew, “Potentiometric dyes: imaging electrical activity of cell membranes,” Pure Appl. Chem. 68, 1405–1409 (1996).
  30. P. Fromherz, “Instrumentation for handling monomolecular films at an air–water interface,” Rev. Sci. Instrum. 46, 1380–1385 (1975).
  31. K. B. Blodgett and I. Langmuir, “Built-up films of barium stearate and their optical properties,” Phys. Rev. 51, 964–982 (1937).
  32. I. Langmuir and V. J. Schaefer, “Activities of urease and pepsin monolayers,” J. Am. Chem. Soc. 60, 1351–1360 (1938).
  33. G. E. Jellison, Jr., and F. A. Modine, “Optical constants for silicon at 300 K and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys. 53, 3745–3753 (1982).
  34. K. H. Hellwege, ed., Landolt-Börnstein, 6th Ed. (Springer, Berlin, 1962), Vol. II, Part 8.
  35. R. J. Cherry and D. Chapman, “Optical properties of black lecithin films,” J. Mol. Biol. 40, 19–32 (1969).
  36. O. J. Sims, A. S. Waggoner, C. H. Wang, and J. F. Hoffmann, “Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles,” Biochemistry 13, 3315–3330 (1974).
  37. M. Krieg, M. B. Srichai, and R. W. Redmond, “Photophysical properties of 3,2-dialkylthiacarbocyanine dyes in organized media: unilamellar liposomes and thin polymer films,” Biochim. Biophys. Acta 1151, 168–174 (1993).
  38. A. Lambacher and P. Fromherz, “Orientation of hemicyanine dye in lipid membrane measured by fluorescence interferometry on a silicon chip,” J. Phys. Chem. 105, 343–346 (2001).
  39. A. S. Curtis, “The mechanism of adhesion of cells to glass. A study by interference reflection microscopy,” J. Cell Biol. 20, 199–215 (1964).
  40. D. Gingell and I. Todd, “Interference reflection microscopy: a quantitative theory for image interpretation and its application to cell–substratum separation measurement,” Biophys. J. 26, 507–526 (1979).
  41. J. O. Rädler, T. J. Feder, H. H. Strey, and E. Sackmann, “Fluctuation analysis of tension controlled undulation forces between giant vesicles and solid substrates,” Phys. Rev. E 51, 4526 (1995).
  42. J. S. Burmeister, L. A. Olivier, W. M. Reichert, and G. A. Truskey, “Application of total internal reflection fluorescence microscopy to study cell adhesion to biomaterials,” Biomaterials 19, 307–325 (1998).
  43. P. Geggier and G. Fuhr, “A time-resolved total internal reflection aqueous fluorescence (TIRAF) microscope for the investigation of cell adhesion dynamics,” Appl. Phys. A 68, 505–513 (1999).
  44. K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76, 509–516 (1999).
  45. A. Sommerfeld, Partial Differential Equations in Physics: Lectures on Theoretical Physics (Academic, San Diego, Calif., 1964), Vol. 6.
  46. H. Weyl, “Ausbreitung elektromagnetischer Wellen über einem ebenen Leiter,” Ann. Phys. (Leipzig) 60, 481–500 (1919).
  47. J. A. Stratton, Electromagnetic theory (McGraw-Hill, New York, 1941).
  48. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C, 2nd ed. (Cambridge University, Cambridge, England, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited