OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 6 — Jun. 1, 2002
  • pp: 1467–1470

Atomic-stabilization experiment involving two laser pulses: numerical simulation

Javier R. Vázquez de Aldana and Luis Roso  »View Author Affiliations

JOSA B, Vol. 19, Issue 6, pp. 1467-1470 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (129 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on realistic numerical simulations of atomic hydrogen interacting with high-frequency ultraintense laser pulses, we show an optimized laser scheme for an experiment on atomic stabilization. A single traveling wave does not constitute an appropriate experimental arrangement, provided that the magnetic drift (the radiation pressure) plays a fundamental role in governing the dynamics of the wave packet in this range of laser parameters. There is, however, a possible experiment where this undesired effect of the magnetic field can be eliminated: our proposal is that the incoming field has to be split into two counterpropagating fields with certain polarization conditions.

© 2002 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.4180) Atomic and molecular physics : Multiphoton processes
(270.6620) Quantum optics : Strong-field processes

Javier R. Vázquez de Aldana and Luis Roso, "Atomic-stabilization experiment involving two laser pulses: numerical simulation," J. Opt. Soc. Am. B 19, 1467-1470 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Kramers, Collected Scientific Papers (North-Holland, Amsterdam, 1956).
  2. W. C. Henneberger, “Perturbation method for atoms in intense light beams,” Phys. Rev. Lett. 21, 838–841 (1968). [CrossRef]
  3. M. Gavrila, “Atomic structure and decay in high-frequency fields,” in Atoms in Intense Laser Fields, M. Gavrila, ed. (Academic, New York, 1992), pp. 435–510.
  4. K. C. Kulander, K. J. Schafer, and J. L. Krause, “Time-dependent studies of multiphoton processes,” in Atoms in Intense Laser Fields, M. Gavrila, ed. (Academic, New York, 1992), pp. 247–300.
  5. J. H. Eberly, R. Grobe, C. K. Law, and Q. Su, “Numerical experiments in strong and superstrong fields,” in Atoms in Intense Laser Fields, M. Gavrila, ed. (Academic, New York, 1992), pp. 301–334.
  6. M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60, 389–486 (1997). [CrossRef]
  7. A. Bugacov, M. Pont, and R. Shakeshaft, “Possibility of breakdown of atomic stabilization in an intense high-frequency field,” Phys. Rev. A 48, R4027–R4030 (1993). [CrossRef]
  8. J. R. Vázquez de Aldana and L. Roso, “Magnetic-field effect in atomic ionization by intense laser fields,” Opt. Express 5, 144–148 (1999). [CrossRef] [PubMed]
  9. J. H. Eberly, “Interaction of very intense light with free electrons,” Prog. Opt. 7, 359–415 (1969). [CrossRef]
  10. E. S. Sarachik and G. T. Schappert, “Classical theory of the scattering of intense laser radiation by free electrons,” Phys. Rev. D 1, 2738–2753 (1970). [CrossRef]
  11. C. H. Keitel and P. L. Knight, “Monte Carlo classical simulations of ionization and harmonic generation in the relativistic regime,” Phys. Rev. A 51, 1420–1430 (1995). [CrossRef] [PubMed]
  12. J. Andruszkow, “First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength,” Phys. Rev. Lett. 85, 3825–3829 (2000). [CrossRef]
  13. J. Bauer, L. Pluciński, B. Piraux, R. Potvliege, M. Gajda, and J. Krzywiński, “Ionization of hydrogen atoms by intense vacuum ultraviolet radiation,” J. Phys. B 34, 2245–2254 (2001). [CrossRef]
  14. J. R. Vázquez de Aldana and L. Roso, “Nonrelativistic numerical study of atomic ionization by strong laser fields without the dipole approximation in a flat-atom model,” Phys. Rev. A 61, 043403 (2000). [CrossRef]
  15. N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. Vázquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms interacting with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000). [CrossRef] [PubMed]
  16. J. R. Vázquez de Aldana, N. J. Kylstra, L. Roso, P. L. Knight, A. Patel, and R. A. Worthington, “Atoms interacting with intense, high-frequency laser pulses: effect of the magnetic-field component on atomic stabilization,” Phys. Rev. A 64, 013411 1–11 (2001).
  17. A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, “Stabilization with arbitrary laser polarizations,” Phys. Rev. A 58, R2652–R2655 (1998). [CrossRef]
  18. M. Yu Ryabikin and A. M. Sergeev, “Stabilization window and attosecond pulse train production at atom ionization in superintense laser field,” Opt. Express 7, 417–426 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited